1
|
Li R, Ma L, Geng Y, Chen X, Zhu J, Zhu H, Wang D. Uteroplacental microvascular remodeling in health and disease. Acta Physiol (Oxf) 2025; 241:e70035. [PMID: 40156319 DOI: 10.1111/apha.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
The microvascular system is essential for delivering oxygen and nutrients to tissues while removing metabolic waste. During pregnancy, the uteroplacental microvascular system undergoes extensive remodeling to meet the increased demands of the fetus. Key adaptations include vessel dilation and increases in vascular volume, density, and permeability, all of which ensure adequate placental perfusion while maintaining stable maternal blood pressure. Structural and functional abnormalities in the uteroplacental microvasculature are associated with various gestational complications, posing both immediate and long-term risks to the health of both mother and infant. In this review, we describe the changes in uteroplacental microvessels during pregnancy, discuss the pathogenic mechanisms underlying diseases such as preeclampsia, fetal growth restriction, and gestational diabetes, and summarize current clinical and research approaches for monitoring microvascular health. We also provide an update on research models for gestational microvascular complications and explore solutions to several unresolved challenges. With advancements in research techniques, we anticipate significant progress in understanding and managing these diseases, ultimately leading to new therapeutic strategies to improve maternal and fetal health.
Collapse
Affiliation(s)
- Ruizhi Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Ma
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yingchun Geng
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaoxue Chen
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaxi Zhu
- Life Sciences, Faculty of Arts & Science, University of Toronto - St. George Campus, Toronto, Ontario, Canada
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Dong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Li M, Hao N, Jiang Y, Xue H, Dai Y, Wang M, Bai J, Lv Y, Qi Q, Zhou X. Contribution of uniparental disomy to fetal growth restriction: a whole-exome sequencing series in a prenatal setting. Sci Rep 2024; 14:238. [PMID: 38168635 PMCID: PMC10762123 DOI: 10.1038/s41598-023-50584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Fetal growth restriction (FGR), a leading cause of perinatal morbidity and mortality, is caused by fetal, maternal, and placental factors. Uniparental disomy (UPD) is a rare condition that leads to imprinting effects, low-level mosaic aneuploidies and homozygosity for pathogenic variants. In the present study, UPD events were detected in 5 women with FGR by trio exome sequencing (trio-WES) of a cohort of 150 FGR cases. Furthermore, noninvasive prenatal testing results of the 5 patients revealed a high risk of rare autosomal trisomy. Trio-WES showed no copy-number variations (CNVs) or nondisease-causing mutations associated with FGR. Among the 5 women with FGR, two showed gene imprinting, and two exhibited confined placental mosaicism (CPM) by copy number variant sequencing (CNV-seq). The present study showed that in FGR patients with UPD, the detection of imprinted genes and CPM could enhance the genetic diagnosis of FGR.
Collapse
Affiliation(s)
- Mengmeng Li
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Na Hao
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yulin Jiang
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian, 350001, China
| | - Yifang Dai
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian, 350001, China
| | - Mingming Wang
- GenoDecode (Beijing) Co. Ltd., Beijing, 101160, China
| | - Junjie Bai
- Be Creative Lab (Beijing) Co. Ltd., Beijing, 100176, China
| | - Yan Lv
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qingwei Qi
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiya Zhou
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Fernández-Boyano I, Inkster AM, Yuan V, Robinson WP. eoPred: predicting the placental phenotype of early-onset preeclampsia using public DNA methylation data. Front Genet 2023; 14:1248088. [PMID: 37736302 PMCID: PMC10509376 DOI: 10.3389/fgene.2023.1248088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023] Open
Abstract
Background: A growing body of literature has reported molecular and histological changes in the human placenta in association with preeclampsia (PE). Placental DNA methylation (DNAme) and transcriptomic patterns have revealed molecular subgroups of PE that are associated with placental histopathology and clinical phenotypes of the disease. However, the clinical and molecular heterogeneity of PE both across and within subtypes complicates the study of this disease. PE is most strongly associated with placental pathology and adverse fetal and maternal outcomes when it develops early in pregnancy. We focused on placentae from pregnancies affected by preeclampsia that were delivered before 34 weeks of gestation to develop eoPred, a predictor of the DNAme signature associated with the placental phenotype of early-onset preeclampsia (EOPE). Results: Public data from 83 placental samples (HM450K), consisting of 42 EOPE and 41 normotensive preterm birth (nPTB) cases, was used to develop eoPred-a supervised model that relies on a highly discriminative 45 CpG DNAme signature of EOPE in the placenta. The performance of eoPred was assessed using cross-validation (AUC = 0.95) and tested in an independent validation cohort (n = 49, AUC = 0.725). A subset of fetal growth restriction (FGR) and late-PE cases showed a similar DNAme profile at the 45 predictive CpGs, consistent with the overlap in placental pathology between these conditions. The relationship between the EOPE probability generated by eoPred and various phenotypic variables was also assessed, revealing that it is associated with gestational age, and it is not driven by cell composition differences. Conclusion: eoPred relies on a 45-CpG DNAme signature to predict a homogeneous placental phenotype of EOPE in a discrete or continuous manner. Using this classifier should 1) aid in the study of placental insufficiency and improve the consistency of future placental DNAme studies of PE, 2) facilitate identifying the placental phenotype of EOPE in public data sets and 3) importantly, standardize the placental diagnosis of EOPE to allow better cross-cohort comparisons. Lastly, classification of cases with eoPred will be useful for investigating the relationship between placental pathology and genetic or environmental variables.
Collapse
Affiliation(s)
- I. Fernández-Boyano
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - A. M. Inkster
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - V. Yuan
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - W. P. Robinson
- BC Children’s Hospital Research Institute (BCCHR), Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|