1
|
Samarkhanova D, Zhabagin M, Nadirov N. Reviewing the Genetic and Molecular Foundations of Congenital Spinal Deformities: Implications for Classification and Diagnosis. J Clin Med 2025; 14:1113. [PMID: 40004644 PMCID: PMC11856472 DOI: 10.3390/jcm14041113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Congenital spinal deformities (CSDs) are rare but severe conditions caused by abnormalities in vertebral development during embryogenesis. These deformities, including scoliosis, kyphosis, and lordosis, significantly impair patients' quality of life and present challenges in diagnosis and treatment. This review integrates genetic, molecular, and developmental insights to provide a comprehensive framework for classifying and understanding CSDs. Traditional classification systems based on morphological criteria, such as failures in vertebral formation, segmentation, or mixed defects, are evaluated alongside newer molecular-genetic approaches. Advances in genetic technologies, including whole-exome sequencing, have identified critical genes and pathways involved in somitogenesis and sclerotome differentiation, such as TBX6, DLL3, and PAX1, as well as key signaling pathways like Wnt, Notch, Hedgehog, BMP, and TGF-β. These pathways regulate vertebral development, and their disruption leads to skeletal abnormalities. The review highlights the potential of molecular classifications based on genetic mutations and developmental stage-specific defects to enhance diagnostic precision and therapeutic strategies. Early diagnosis using non-invasive prenatal testing (NIPT) and emerging tools like CRISPR-Cas9 gene editing offer promising but ethically complex avenues for intervention. Limitations in current classifications and the need for further research into epigenetic and environmental factors are discussed. This study underscores the importance of integrating molecular genetics into clinical practice to improve outcomes for patients with CSDs.
Collapse
Affiliation(s)
| | - Maxat Zhabagin
- National Center for Biotechnology, Astana 010000, Kazakhstan;
| | - Nurbek Nadirov
- National Center for Biotechnology, Astana 010000, Kazakhstan;
- Department of Orthopedics, Mother and Child Health Center, University Medical Center, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Fei J, Zhai L, Wang J, Zhu X, Liu P, Wang L, Ma D, Li L, Zhou J. Evaluating PAX1/JAM3 methylation for triage in HPV 16/18-infected women. Clin Epigenetics 2024; 16:190. [PMID: 39726021 DOI: 10.1186/s13148-024-01804-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE Referring all women who tested positive for human papillomavirus (HPV) 16/18 to colposcopy may lead to potential over-referral issues. Triage tests based on cytology results face challenges in achieving accurate diagnoses. Our study aims to assess the clinical effectiveness of PAX1/JAM3 methylation (CISCER) test as a triage method for HPV 16/18-positive women. METHODS From November 2021 to December 2022, a total of 334 women who tested positive for HPV 16/18 and were referred to colposcopy at The Second Affiliated Hospital of Zhejiang University School of Medicine were studied. The clinical utility of the CISCER test, cytology, and the combination of CISCER with cytology as potential triage tests was compared. RESULTS We observed a significant increase in the methylation levels of PAX1 gene and JAM3 gene in women with cervical intraepithelial neoplasia (CIN) grade 2 or severe (CIN2+). The CISCER test demonstrated superior triage performance over cytology, even when used in combination with cytology, showing a high sensitivity of 89.0% (95% confidence interval [CI] 82.9-95.1%) and specificity of 95.3% (95% CI 92.6-98.0%). It achieved an area under the curve of 0.921 (95% CI 0.877-0.966) and an odds ratio of 164.02 (95% CI 68.64-391.95). The immediate CIN2+ risk based on positive CISCER results would be 89.0% (95% CI 80.8-94.1%), with an estimated average of 1.12 referrals needed to detect one CIN2+ case. Moreover, CISCER triaging successfully identified all cancer patients and did not miss any CIN3+ cases among women aged ≥ 30. CONCLUSIONS The PAX1/JAM3 methylation detection exhibited excellent accuracy in identifying cervical precancerous lesions in HPV 16/18-positive women and could be considered as a triage tool to reduce excessive referrals for colposcopy and overtreatment.
Collapse
Affiliation(s)
- Jing Fei
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lingyun Zhai
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jing Wang
- Department of Medical Laboratory, Beijing Origin-Poly Bio-Tec Co., Ltd., Beijing, 102629, China
| | - Xiaoqing Zhu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Pei Liu
- Department of Medical Laboratory, Beijing Origin-Poly Bio-Tec Co., Ltd., Beijing, 102629, China
| | - Linhai Wang
- Department of Medical Laboratory, Beijing Origin-Poly Bio-Tec Co., Ltd., Beijing, 102629, China
| | - Dongxue Ma
- Department of Medical Laboratory, Beijing Origin-Poly Bio-Tec Co., Ltd., Beijing, 102629, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Key Laboratory of Cancer Invasion and Metastasis (HUST), Ministry of Education, Wuhan, 430000, China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Chen X, Jiang H, Xu H, Wang L, Liu P, Ma D, Wang H, Shou H, Fang X. Cervical cancer screening: efficacy of PAX1 and JAM3 methylation assay in the triage of atypical squamous cell of undetermined significance (ASC-US). BMC Cancer 2024; 24:1385. [PMID: 39528979 PMCID: PMC11556146 DOI: 10.1186/s12885-024-13082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Atypical squamous cells of undetermined significance (ASC-US) often present diagnostic challenges with cytology-based results, leading to potential underdiagnosis or overdiagnosis. An effective triage method is essential for managing these cases to reduce unnecessary referrals and treatment. METHODS A total of 322 women diagnosed with ASC-US were tested for HPV-DNA and the PAX1 and JAM3 methylation (PAX1m/JAM3m) test in the study. RESULTS Methylation levels of PAX1 and JAM3 were significantly elevated in cervical lesions classified as CIN2 or more severe lesions (CIN2+). The methylation assay demonstrated a sensitivity of 83.8% and a specificity of 95.8%, outperforming HPV-DNA testing in differentiating high-grade cervical lesions among women with ASC-US. Moreover, PAX1m/JAM3m testing significantly reduced the colposcopy referral rate for further diagnostic procedures in high-risk HPV-positive women by 79.5%. CONCLUSIONS PAX1m/JAM3m testing shows promise as a reliable supplemental method to HPV-DNA testing for the triage of women with cytologic ASC-US. In addition, the molecular triage based on the CISCER assay or single PAX1 or JAM3 methylation, had better effects in the women with non-HPV16/18 group. This approach could potentially minimize overtreatment and unnecessary referrals in clinical practice, enhancing patient management and resource utilization.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Gynecology, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang Province, 310014, The People's Republic of China
| | - Haimin Jiang
- Hangzhou Normal University, Hangzhou, Zhejiang Province, 310014, The People's Republic of China
| | - Hubin Xu
- Hangzhou Normal University, Hangzhou, Zhejiang Province, 310014, The People's Republic of China
| | - Linhai Wang
- Department of Technology, Beijing OriginPoly Biotechnology CO., Ltd, Beijing, 102600, The People's Republic of China
| | - Pei Liu
- Department of Technology, Beijing OriginPoly Biotechnology CO., Ltd, Beijing, 102600, The People's Republic of China
| | - Dongxue Ma
- Department of Technology, Beijing OriginPoly Biotechnology CO., Ltd, Beijing, 102600, The People's Republic of China
| | - Hui Wang
- Department of Technology, Beijing OriginPoly Biotechnology CO., Ltd, Beijing, 102600, The People's Republic of China
| | - Huafeng Shou
- Department of Gynecology, Center for Reproductive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang Province, 310014, The People's Republic of China.
| | - Xuqian Fang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, The People's Republic of China.
| |
Collapse
|
4
|
Han L, Ji Y, Yu Y, Ni Y, Zeng H, Zhang X, Liu H, Zhang Y. Trajectory-centric framework TrajAtlas reveals multi-scale differentiation heterogeneity among cells, genes, and gene modules in osteogenesis. PLoS Genet 2024; 20:e1011319. [PMID: 39436962 PMCID: PMC11530032 DOI: 10.1371/journal.pgen.1011319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Osteoblasts, the key cells responsible for bone formation and the maintenance of skeletal integrity, originate from a diverse array of progenitor cells. However, the mechanisms underlying osteoblast differentiation from these multiple osteoprogenitors remain poorly understood. To address this knowledge gap, we developed a comprehensive framework to investigate osteoblast differentiation at multiple scales, encompassing cells, genes, and gene modules. We constructed a reference atlas focused on differentiation, which incorporates various osteoprogenitors and provides a seven-level cellular taxonomy. To reconstruct the differentiation process, we developed a model that identifies the transcription factors and pathways involved in differentiation from different osteoprogenitors. Acknowledging that covariates such as age and tissue type can influence differentiation, we created an algorithm to detect differentially expressed genes throughout the differentiation process. Additionally, we implemented methods to identify conserved pseudotemporal gene modules across multiple samples. Overall, our framework systematically addresses the heterogeneity observed during osteoblast differentiation from diverse sources, offering novel insights into the complexities of bone formation and serving as a valuable resource for understanding osteogenesis.
Collapse
Affiliation(s)
- Litian Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yiqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Kamal MM, Islam MN, Rabby MG, Zahid MA, Hasan MM. In Silico Functional and Structural Analysis of Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) in Human Paired Box 4 Gene. Biochem Genet 2024; 62:2975-2998. [PMID: 38062275 DOI: 10.1007/s10528-023-10589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/06/2023] [Indexed: 07/31/2024]
Abstract
In human genome, members of Paired box (PAX) transcription factor family are highly sequence-specific DNA-binding proteins. Among PAX gene family members, PAX4 gene has significant role in growth, proliferation, differentiation, and insulin secretion of pancreatic β-cells. Single nucleotide polymorphisms (SNPs) in PAX4 gene progress in the pathogenesis of various human diseases. Hence, the molecular mechanism of how these SNPs in PAX4 gene significantly progress diseases pathogenesis needs to be elucidated. For the reason, a series of bioinformatic analyzes were done to identify the SNPs of PAX4 gene that contribute in diseases pathogenesis. From the analyzes, 4145 SNPs (rsIDs) in PAX4 gene were obtained, where, 362 missense (8.73%), 169 synonymous (4.08%), and 2323 intron variants (56.04%). The rest SNPs were unspecified. Among the 362 missense variants, 118 nsSNPs were found as deleterious in SIFT analysis. Among those, 25 nsSNPs were most probably damaging and 23 were deleterious as observed in PolyPhen-2 and PROVEAN analyzes, respectively. Following all analyzes, 14 nsSNPs (rs149708455, rs115887120, rs147279315, rs35155575, rs370095957, rs373939873, rs145468905, rs121917718, rs2233580, rs3824004, rs372751660, rs369459316, rs375472849, rs372497946) were common and observed as deleterious, probably damaging, affective and diseases associated. Following structural analyzes, 11 nsSNPs guided proteins were found as most unstable and highly conserved. Among these, R20W, R39Q, R45Q, R60H, G65D, and A223D mutated proteins were highly harmful. Hence, the results from above-mentioned integrated comprehensive bioinformatic analyzes guide how different nsSNPs in PAX4 gene alter structural and functional characteristics of the protein that might progress diseases pathogenesis in human including type 2 diabetes.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Numan Islam
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Food Engineering, North Pacific International University of Bangladesh, Dhaka, Bangladesh
| | - Md Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Ashrafuzzaman Zahid
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
| |
Collapse
|
6
|
Zhong J, Wang W, Li Y, Wei J, Cui S, Song N, Zhang Y, Liu H. Genome-Wide Identification and Evolutionary and Mutational Analysis of the Bos taurus Pax Gene Family. Genes (Basel) 2024; 15:897. [PMID: 39062676 PMCID: PMC11275364 DOI: 10.3390/genes15070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Bos taurus is known for its tolerance of coarse grains, adaptability, high temperature, humidity, and disease resistance. Primarily, cattle are raised for their meat and milk, and pinpointing genes associated with traits relevant to meat production can enhance their overall productivity. The aim of this study was to identify the genome, analyze the evolution, and explore the function of the Pax gene family in B. taurus to provide a new molecular target for breeding in meat-quality-trait cattle. In this study, 44 Pax genes were identified from the genome database of five species using bioinformatics technology, indicating that the genetic relationships of bovids were similar. The Pax3 and Pax7 protein sequences of the five animals were highly consistent. In general, the Pax gene of the buffalo corresponds to the domestic cattle. In summary, there are differences in affinity between the Pax family genes of buffalo and domestic cattle in the Pax1/9, Pax2/5/8, Pax3/7, and Pax4/6 subfamilies. We believe that Pax1/9 has an effect on the growth traits of buffalo and domestic cattle. The Pax3/7 gene is conserved in the evolution of buffalo and domestic animals and may be a key gene regulating the growth of B. taurus. The Pax2/5/8 subfamily affects coat color, reproductive performance, and milk production performance in cattle. The Pax4/6 subfamily had an effect on the milk fat percentage of B. taurus. The results provide a theoretical basis for understanding the evolutionary, structural, and functional characteristics of the Pax family members of B. taurus and for molecular genetics and the breeding of meat-production B. taurus species.
Collapse
Affiliation(s)
- Jintao Zhong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
| | - Wenliang Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
| | - Yifei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
| | - Jia Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
| | - Shuangshuang Cui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
| | - Ning Song
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongyu Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Lizano M, Carrillo-García A, De La Cruz-Hernández E, Castro-Muñoz LJ, Contreras-Paredes A. Promising predictive molecular biomarkers for cervical cancer (Review). Int J Mol Med 2024; 53:50. [PMID: 38606495 PMCID: PMC11090266 DOI: 10.3892/ijmm.2024.5374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) constitutes a serious public health problem. Vaccination and screening programs have notably reduced the incidence of CC worldwide by >80%; however, the mortality rate in low‑income countries remains high. The staging of CC is a determining factor in therapeutic strategies: The clinical management of early stages of CC includes surgery and/or radiotherapy, whereas radiotherapy and/or concurrent chemotherapy are the recommended therapeutic strategies for locally advanced CC. The histopathological characteristics of tumors can effectively serve as prognostic markers of radiotherapy response; however, the efficacy rate of radiotherapy may significantly differ among cancer patients. Failure of radiotherapy is commonly associated with a higher risk of recurrence, persistence and metastasis; therefore, radioresistance remains the most important and unresolved clinical problem. This condition highlights the importance of precision medicine in searching for possible predictive biomarkers to timely identify patients at risk of treatment response failure and provide tailored therapeutic strategies according to genetic and epigenetic characteristics. The present review aimed to summarize the evidence that supports the role of several proteins, methylation markers and non‑coding RNAs as potential predictive biomarkers for CC.
Collapse
Affiliation(s)
- Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adela Carrillo-García
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - Erick De La Cruz-Hernández
- Laboratorio de Investigación en Enfermedades Metabólicas e Infecciosas, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur Cuarta Sección, Comalcalco City, Tabasco 86650, Mexico
| | | | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| |
Collapse
|
8
|
Haque MA, Lee YM, Ha JJ, Jin S, Park B, Kim NY, Won JI, Kim JJ. Genome-wide association study identifies genomic regions associated with key reproductive traits in Korean Hanwoo cows. BMC Genomics 2024; 25:496. [PMID: 38778305 PMCID: PMC11112828 DOI: 10.1186/s12864-024-10401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Conducting genome-wide association studies (GWAS) for reproductive traits in Hanwoo cattle, including age at first calving (AFC), calving interval (CI), gestation length (GL), and number of artificial inseminations per conception (NAIPC), is of paramount significance. These analyses provided a thorough exploration of the genetic basis of these traits, facilitating the identification of key markers for targeted trait improvement. Breeders can optimize their selection strategies, leading to more efficient and sustainable breeding programs, by incorporating genetic insights. This impact extends beyond individual traits and contributes to the overall productivity and profitability of the Hanwoo beef cattle industry. Ultimately, GWAS is essential in ensuring the long-term genetic resilience and adaptability of Hanwoo cattle populations. The primary goal of this study was to identify significant single nucleotide polymorphisms (SNPs) or quantitative trait loci (QTLs) associated with the studied reproductive traits and subsequently map the underlying genes that hold promise for trait improvement. RESULTS A genome-wide association study of reproductive traits identified 68 significant single nucleotide polymorphisms (SNPs) distributed across 29 Bos taurus autosomes (BTA). Among them, BTA14 exhibited the highest number of identified SNPs (25), whereas BTA6, BTA7, BTA8, BTA10, BTA13, BTA17, and BTA20 exhibited 8, 5, 5, 3, 8, 2, and 12 significant SNPs, respectively. Annotation of candidate genes within a 500 kb region surrounding the significant SNPs led to the identification of ten candidate genes relevant to age at first calving. These genes were: FANCG, UNC13B, TESK1, TLN1, and CREB3 on BTA8; FAM110B, UBXN2B, SDCBP, and TOX on BTA14; and MAP3K1 on BTA20. Additionally, APBA3, TCF12, and ZFR2, located on BTA7 and BTA10, were associated with the calving interval; PAX1, SGCD, and HAND1, located on BTA7 and BTA13, were linked to gestation length; and RBM47, UBE2K, and GPX8, located on BTA6 and BTA20, were linked to the number of artificial inseminations per conception in Hanwoo cows. CONCLUSIONS The findings of this study enhance our knowledge of the genetic factors that influence reproductive traits in Hanwoo cattle populations and provide a foundation for future breeding strategies focused on improving desirable traits in beef cattle. This research offers new evidence and insights into the genetic variants and genome regions associated with reproductive traits and contributes valuable information to guide future efforts in cattle breeding.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
| | - Jae-Jung Ha
- Gyeongbuk Livestock Research Institute, Yeongju, 36052, Korea
| | - Shil Jin
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Byoungho Park
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Nam-Young Kim
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Jeong-Il Won
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea.
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea.
| |
Collapse
|
9
|
Miao D, Ren J, Jia Y, Jia Y, Li Y, Huang H, Gao R. PAX1 represses canonical Wnt signaling pathway and plays dual roles during endoderm differentiation. Cell Commun Signal 2024; 22:242. [PMID: 38664733 PMCID: PMC11046865 DOI: 10.1186/s12964-024-01629-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Paired box 1 (PAX1) is a transcription factor and essential for the development of pharyngeal pouches-derived tissues, including thymus. PAX1 mutations are identified in Severe Combined Immunodeficiency (SCID) patients with Otofaciocervical Syndrome Type 2 (OTFCS2). However, despite the critical roles of PAX1 in embryonic development and diseases, detailed insights into its molecular mode of action are critically missing. METHODS The repressing roles of PAX1 and SCID associated mutants on Wnt signaling pathway were investigated by luciferase reporter assays, qRT-PCR and in situ hybridization in HEK293FT, HCT116 cells and zebrafish embryos, respectively. Co-immunoprecipitation (co-IP) and western blotting assays were carried out to identify the molecular mechanisms underlying PAX1's role on Wnt signaling pathway. hESC based endoderm differentiation, flow cytometry, high-throughput sequencing data analysis, and qRT-PCR assays were utilized to determine the roles of PAX1 during endoderm differentiation. RESULTS Here, we show that PAX1 represses canonical Wnt signaling pathway in vertebrate cells. Mechanically, PAX1 competes with SUMO E3 ligase PIASy to bind to TCF7L2, thus perturbing TCF7L2 SUMOylation level, further reducing its transcriptional activity and protein stability. Moreover, we reveal that PAX1 plays dual roles in hESC-derived definitive and foregut/pharyngeal endoderm cells, which give rise to the thymus epithelium, by inhibiting Wnt signaling. Importantly, our data show PAX1 mutations found in SCID patients significantly compromise the suppressing ability of PAX1 on Wnt signaling. CONCLUSIONS Our study presents a novel molecular mode of action of PAX1 in regulation of canonical Wnt signaling and endoderm differentiation, thus providing insights for the molecular basis of PAX1 associated SCID, offering better understanding of the behavior of PAX1 in embryogenesis.
Collapse
Affiliation(s)
- Danxiu Miao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, 361000, China
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150000, China
| | - Jie Ren
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, 361000, China
| | - Yanhan Jia
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Yihui Jia
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, 361000, China
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150000, China
- College of Public Health, Shantou University, Shantou, 515063, China
| | - Huizhe Huang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Rui Gao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
10
|
Ullah Z, Zafar A, Ishaq H, Umar Z, Khan A, Badar Y, Din N, Khan MF, McCombe P, Khan N. Transient binocular vision loss and pain insensitivity in Klippel-Feil syndrome: a case report. J Med Case Rep 2024; 18:137. [PMID: 38444009 PMCID: PMC10916052 DOI: 10.1186/s13256-024-04374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Klippel-Feil syndrome is a rare congenital bone disorder characterized by an abnormal fusion of two or more cervical spine vertebrae. Individuals with Klippel-Feil syndrome exhibit diverse clinical manifestations, including skeletal irregularities, visual and hearing impairments, orofacial anomalies, and anomalies in various internal organs, such as the heart, kidneys, genitourinary system, and nervous system. CASE PRESENTATION This case report describes a 12-year-old Pashtun female patient who presented with acute bilateral visual loss. The patient had Klippel-Feil syndrome, with the typical clinical triad symptoms of Klippel-Feil syndrome, along with Sprengel's deformity. She also exhibited generalized hypoalgesia, which had previously resulted in widespread burn-related injuries. Upon examination, bilateral optic disc swelling was observed, but intracranial pressure was found to be normal. Extensive investigations yielded normal results, except for hypocalcemia and low vitamin D levels, while parathyroid function remained within the normal range. Visual acuity improved following 2 months of calcium and vitamin D supplementation, suggesting that the visual loss and optic nerve swelling were attributed to hypocalcemia. Given the normal parathyroid function, it is possible that hypocalcemia resulted from low vitamin D levels, which can occur after severe burn scarring. Furthermore, the patient received a provisional diagnosis of congenital insensitivity to pain on the basis of the detailed medical history and the findings of severe and widespread loss of the ability to perceive painful stimuli, as well as impaired temperature sensation. However, due to limitations in genetic testing, confirmation of the congenital insensitivity to pain diagnosis could not be obtained. CONCLUSION This case highlights a rare presentation of transient binocular vision loss and pain insensitivity in a patient with Klippel-Feil syndrome, emphasizing the importance of considering unusual associations in symptom interpretation.
Collapse
Affiliation(s)
- Zeeshan Ullah
- Department of Neurology, Lady Reading Hospital, Peshawar, Pakistan
| | - Ayesha Zafar
- Department of Neurology, Lady Reading Hospital, Peshawar, Pakistan
| | - Hira Ishaq
- Department of Neurology, Lady Reading Hospital, Peshawar, Pakistan
| | - Zainab Umar
- Department of Neonatology, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Amir Khan
- Department of Neurology, Lady Reading Hospital, Peshawar, Pakistan
| | - Yaseen Badar
- Department of Neurology, Lady Reading Hospital, Peshawar, Pakistan
| | - Nizamud Din
- Department of Neurology, Lady Reading Hospital, Peshawar, Pakistan
| | | | - Pamela McCombe
- Faculty of Medicine, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, Brisbane, QLD, 4029, Australia.
| | - Nemat Khan
- College of Medicine and Health Science, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia Campus, Brisbane, Australia.
| |
Collapse
|
11
|
Draga M, Scaal M. Building a vertebra: Development of the amniote sclerotome. J Morphol 2024; 285:e21665. [PMID: 38100740 DOI: 10.1002/jmor.21665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.
Collapse
Affiliation(s)
- Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Spinelli C, Ghionzoli M, Guglielmo C, Baroncelli G, Tyutyusheva N, Frega A, Patrizio A, Fallahi P, Ferrari SM, Antonelli A. Hypoparathyroidism Associated with Benign Thyroid Nodules in DiGeorge-like Syndrome: A Rare Case Report and Literature Review. Endocr Metab Immune Disord Drug Targets 2024; 24:850-856. [PMID: 37986268 DOI: 10.2174/0118715303274582231102094440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND DiGeorge-like syndrome (DGLS) is a rare genetic disorder due to the presence of the same classical clinical manifestations of DiGeorge syndrome (DGS) without its typical deletion. In the DGLS phenotype, hypoparathyroidism seldom occurs and is considered rare. In DGS, hypocalcemia affects up to 70% of patients, and a considerable share often has asymptomatic thyroid abnormalities. CASE PRESENTATION In this study, we describe an unusual case of a 16-year-old patient with DGLS due to a duplication of 365 kb in the 20p11.22 region, affected by hypoparathyroidism associated with thyroid nodule. The intraoperative parathyroid evaluation ruled out agenesis as a cause of hypoparathyroidism. In addition, we carried out a thorough literature review from 2010 to 2023 of DGLS cases using specific keywords, such as "22q11.2 deletion syndrome", "Di- George-like Syndrome", "hypoparathyroidism", "thyroid", and "children", analyzing 119 patients with DGLS. CONCLUSION Interestingly enough, the present case represents, to our knowledge, the first report of a patient with DGLS associated with hypoparathyroidism and the presence of thyroid nodules where an intraoperative observation reported a non-functional parathyroid gland.
Collapse
Affiliation(s)
- Claudio Spinelli
- Department of Surgery, Division of Pediatric and Adolescent Surgery, University of Pisa, Pisa, Italy
| | - Marco Ghionzoli
- Department of Surgery, Division of Pediatric and Adolescent Surgery, University of Pisa, Pisa, Italy
| | - Carla Guglielmo
- Department of Surgery, Division of Pediatric and Adolescent Surgery, University of Pisa, Pisa, Italy
| | - Giampiero Baroncelli
- Department of Clinical and Experimental Medicine, Pediatric Unit, University of Pisa, Pisa, Italy
| | - Nina Tyutyusheva
- Department of Clinical and Experimental Medicine, Pediatric Unit, University of Pisa, Pisa, Italy
| | - Alessia Frega
- Department of Surgery, Division of Pediatric and Adolescent Surgery, University of Pisa, Pisa, Italy
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Alessandro Antonelli
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Elbagoury NM, Abdel-Aleem AF, Sharaf-Eldin WE, Ashaat EA, Esswai ML. A Novel Truncating Mutation in PAX1 Gene Causes Otofaciocervical Syndrome Without Immunodeficiency. J Mol Neurosci 2023; 73:976-982. [PMID: 37924468 PMCID: PMC10754723 DOI: 10.1007/s12031-023-02170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Otofaciocervical syndrome (OTFCS) is a rare genetic disorder of both autosomal recessive and autosomal dominant patterns of inheritance. It is caused by biallelic or monoallelic mutations in PAX1 or EYA1 genes, respectively. Here, we report an OTFCS2 female patient of 1st consanguineous healthy parents. She manifested facial dysmorphism, hearing loss, intellectual disability (ID), and delayed language development (DLD) as the main clinical phenotype. The novel homozygous variant c.1212dup (p.Gly405Argfs*51) in the PAX1 gene was identified by whole exome sequencing (WES), and family segregation confirmed the heterozygous status of the mutation in the parents using the Sanger sequencing. The study recorded a novel PAX1 variant representing the sixth report of OTFCS2 worldwide and the first Egyptian study expanding the geographic area where the disorder was confined.
Collapse
Affiliation(s)
- Nagham M Elbagoury
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Asmaa F Abdel-Aleem
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Wessam E Sharaf-Eldin
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona L Esswai
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
14
|
He L, Luo X, Bu Q, Jin J, Zhou S, He S, Zhang L, Lin Y, Hong X. PAX1 and SEPT9 methylation analyses in cervical exfoliated cells are highly efficient for detecting cervical (pre)cancer in hrHPV-positive women. J OBSTET GYNAECOL 2023; 43:2179916. [PMID: 36799003 DOI: 10.1080/01443615.2023.2179916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Studies have investigated PAX1 and SEPT methylation were closely associated with cervical cancer. For this study, we verified the expressions of PAX1 and SEPT9 methylation in 236 hrHPV women cervical exfoliated cells by using quantitative methylation-specific PCR and we further explored their diagnostic value in cervical (pre)cancer detection. Our results identified that the methylation rates and levels of PAX1 and SEPT9 increased with cervical lesion severity. For a diagnosis of cervical (pre)cancer, the area under the curve (AUC) of PAX1 methylation was 0.77 (95% CI 0.71-0.83) and the AUC of SEPT9 methylation was 0.86 (95% CI 0.81∼0.90). Analyses of the PAX1 and SEPT9 methylation statuses alone or combined with commonly used tests can efficiently identify cervical (pre)cancer. In particular, SEPT9 methylation might serve as an effective and powerful biomarker for the diagnosis of cervical (pre)cancer and as an alternative triage test in HPV-based cervical (pre)cancer screening programs.Impact StatementWhat is already known on this subject? This subject showed that PAX1 and SEPT9 methylation were closely associated with cervical cancer. The methylation rates and levels of PAX1 and SEPT9 increased with cervical lesion severity and reached a peak in cervical cancer exfoliated cells. We further assessed the diagnostic performances of PAX1 and SEPT9 methylation in cervical cancer screening. In detecting cervical (pre)cancer, the sensitivity values of PAX1 and SEPT9 methylation were up to 61.18% and 82.35%, respectively, and the specificity values of PAX1 and SEPT9 methylation were up to 95.36% and 86.75%, respectively. Moreover, the ROC curve analysis showed AUC values of 0.77 for PAX1 methylation and 0.86 for SEPT9 methylation tests, which were significantly superior to other commonly used tests. These findings suggest that PAX1 and SEPT9 methylation detection may have great clinical potential in cervical cancer screening.What the results of this study add? The rates and levels of PAX1 and SEPT9 methylation increased with the severity of the cervical lesions. For a diagnosis of cervical (pre)cancer, the area under the curve (AUC) of PAX1 methylation was 0.77 (95% CI 0.71-0.83), and the sensitivity and specificity values were 61.18% and 95.36%, respectively. The AUC value of the SEPT9 methylation was 0.86 (95% CI 0.81 ∼ 0.90), and the sensitivity and specificity values were 82.35% and 86.75%, respectively. Compared with the various tests we conducted, the PAX1 methylation showed the highest specificity (95.36%), and the SEPT9 methylation demonstrated the highest accuracy(86.00%).What the implications are of these findings for clinical practice and/or further research? The methylation levels of PAX1 and SEPT9 had a certain predictive effect on the severity of cervical lesions in hrHPV-positive women. In addition, SEPT9 methylation analysis performs better than PAX1 methylation analysis and commonly used tests in cervical exfoliated cells for detecting cervical (pre)cancer in hrHPV-positive women. SEPT9 methylation analysis merits consideration as an effective and objective, alternative triage test in HPV-based cervical (pre)cancer screening programs.
Collapse
Affiliation(s)
- Lulu He
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiping Luo
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qiaowen Bu
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jing Jin
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuai Zhou
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shaoyi He
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Liang Zhang
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yu Lin
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoshan Hong
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|