1
|
Wu KY, Kearn N, Truong D, Choulakian MY, Tran SD. Advances in Regenerative Medicine, Cell Therapy, and 3D Bioprinting for Corneal, Oculoplastic, and Orbital Surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40131704 DOI: 10.1007/5584_2025_855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Advances in regenerative medicine, cell therapy, and 3D bioprinting are reshaping the landscape of ocular surgery, offering innovative approaches to address complex conditions affecting the cornea, ocular adnexal structures, and the orbit. These technologies hold the potential to enhance treatment precision, improve functional outcomes, and address limitations in traditional surgical and therapeutic interventions.The cornea, as the eye's primary refractive and protective barrier, is particularly well-suited for regenerative approaches due to its avascular and immune-privileged nature. Cell-based therapies, including limbal stem cell transplantation as well as stromal keratocyte and corneal endothelial cell regeneration, are being investigated for their potential to restore corneal clarity and function in conditions such as limbal stem cell deficiency, keratoconus, and endothelial dysfunction. Simultaneously, 3D bioprinting technologies are enabling the development of biomimetic corneal constructs, potentially addressing the global shortage of donor tissues and facilitating personalized surgical solutions.In oculoplastic and orbital surgery, regenerative strategies and cell therapies are emerging as possible alternatives to conventional approaches for conditions such as eyelid defects, meibomian gland dysfunction, and Graves' orbitopathy. Stem cell-based therapies and bioengineered scaffolds are showing potential in restoring lacrimal glands' function as well as reconstructing complex ocular adnexal and orbital structures. Moreover, 3D-printed orbital implants and scaffolds offer innovative solutions for repairing traumatic, post-tumor resection, and congenital defects, with the potential for improved biocompatibility and precision.Molecular and gene-based therapies, including exosome delivery systems, nanoparticle-based interventions, and gene-editing techniques, are expanding the therapeutic arsenal for ophthalmic disorders. These approaches aim to enhance the efficacy of regenerative treatments by addressing underlying pathophysiological mechanisms of diseases. This chapter provides an overview of these advancements and the challenges of translating laboratory discoveries into effective therapies in clinical practice.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Natalie Kearn
- Department of Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Doanh Truong
- College of Arts & Science, Case Western Reserve University, Cleveland, OH, USA
| | - Mazen Y Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Abdal Dayem A, Bin Jang S, Lim N, Yeo HC, Kwak Y, Lee SH, Shin HJ, Cho SG. Advances in lacrimal gland organoid development: Techniques and therapeutic applications. Biomed Pharmacother 2025; 183:117870. [PMID: 39870025 DOI: 10.1016/j.biopha.2025.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage. This review explores the recent advancements in LG organoid generation using tissues and stem cells, highlighting cutting-edge techniques in biomaterial-based and scaffold-free technologies. Additionally, we shed light on the complex pathophysiology of LG dysfunction, providing insights into the LG physiological roles while identifying strategies for generating LG organoids and exploring their potential clinical applications. Alterations in LG morphology or secretory function can affect the tear film stability and quality, leading to various ocular pathological conditions. This comprehensive review underlines the critical crosslink of LG organoid development with disease modeling and drug screening, underscoring their potential for advancing therapeutic applications.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nahee Lim
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shin-Hyo Lee
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Republic of Korea; Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Hyun Jin Shin
- Konkuk University School of Medicine, Chungju city, Republic of Korea; Department of Ophthalmology, Konkuk University Medical Center, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea; Institute of Biomedical Science & Technology, Konkuk University, Seoul, Republic of Korea.
| | - Sang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
3
|
Koc AC, Sari V, Kocak G, Recber T, Nemutlu E, Aberdam D, Güven S. Patient-derived cornea organoid model to study metabolomic characterization of rare disease: aniridia-associated keratopathy. BMC Ophthalmol 2025; 25:14. [PMID: 39794714 PMCID: PMC11724546 DOI: 10.1186/s12886-024-03831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Aniridia is a rare panocular disease caused by gene mutation in the PAX6, which is essential for eye development. Aniridia is inherited in an autosomal dominant manner, but its phenotype can vary significantly among individuals with the same mutation. Animal models, such as drosophila, zebrafish, and rodents, have been used to study aniridia through Pax6 deletions. Recently, patient-derived limbal epithelial stem cells (LESCs) and human-induced pluripotent stem cells (hiPSCs) have been used to model the disease in vitro, providing new insights into therapeutic strategies. METHODS In this study, corneal organoids were generated from hiPSCs derived from aniridia patients with three different PAX6 nonsense mutations, allowing for a detailed comparison between diseased and healthy control models. These organoids structurally mimicked the human cornea and were used to investigate histologic and metabolomic differences between healthy and aniridia-derived samples. RESULTS Untargeted metabolomic analysis revealed significant metabolic differences between wild-type (WT) and aniridia-associated keratopathy (AAK) hiPSCs. Further metabolomic profiling at different time points demonstrated distinct metabolic shifts, with amino acid metabolism pathways being consistently enriched in AAK organoids. CONCLUSIONS This study emphasizes the profound impact of AAK mutations on metabolism, particularly in amino acid biosynthesis and energy metabolism pathways.
Collapse
Affiliation(s)
- Ali Can Koc
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye
| | - Vedat Sari
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye
| | - Gamze Kocak
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye
| | - Tuba Recber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100, Ankara, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100, Ankara, Türkiye
| | - Daniel Aberdam
- INSERM U1138, Centre de Recherche Des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye.
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye.
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, 35340, Izmir, Türkiye.
| |
Collapse
|
4
|
Yang R, Qi Y, Zhang X, Gao H, Yu Y. Living biobank: Standardization of organoid construction and challenges. Chin Med J (Engl) 2024; 137:3050-3060. [PMID: 39663560 PMCID: PMC11706585 DOI: 10.1097/cm9.0000000000003414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Indexed: 12/13/2024] Open
Abstract
ABSTRACT In multiple areas such as science, technology, and economic activities, it is necessary to unify the management of repetitive tasks or concepts by standardization to obtain the best order and high efficiency. Organoids, as living tissue models, have rapidly developed in the past decade. Organoids can be used repetitively for in vitro culture, cryopreservation, and recovery for further utilization. Because organoids can recapitulate the parental tissues' morphological phenotypes, cell functions, biological behaviors, and genomic profiles, they are known as renewable "living biobanks". Organoids cover two mainstream fields: Adult stem cell-derived organoids (also known as patient-derived organoids) and induced pluripotent stem cell-derived and/or embryonic stem cell-derived organoids. Given the increasing importance of organoids in the development of new drugs, standardized operation, and management in all steps of organoid construction is an important guarantee to ensure the high quality of products. In this review, we systematically introduce the standardization of organoid construction operation procedures, the standardization of laboratory construction, and available standardization documents related to organoid culture that have been published so far. We also proposed the challenges and prospects in this field.
Collapse
Affiliation(s)
- Ruixin Yang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao Qi
- National Engineering Center for Biochip at Shanghai, Shanghai 200120, China
| | - Xiaoyan Zhang
- National Engineering Center for Biochip at Shanghai, Shanghai 200120, China
| | - Hengjun Gao
- National Engineering Center for Biochip at Shanghai, Shanghai 200120, China
| | - Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Kahveci B, Polatli E, Bastanlar Y, Guven S. OrganoLabeler: A Quick and Accurate Annotation Tool for Organoid Images. ACS OMEGA 2024; 9:46117-46128. [PMID: 39583683 PMCID: PMC11579745 DOI: 10.1021/acsomega.4c06450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
Organoids are self-assembled 3D cellular structures that resemble organs structurally and functionally, providing in vitro platforms for molecular and therapeutic studies. Generation of organoids from human cells often requires long and costly procedures with arguably low efficiency. Prediction and selection of cellular aggregates that result in healthy and functional organoids can be achieved by using artificial intelligence-based tools. Transforming images of 3D cellular constructs into digitally processable data sets for training deep learning models requires labeling of morphological boundaries, which often is performed manually. Here, we report an application named OrganoLabeler, which can create large image-based data sets in a consistent, reliable, fast, and user-friendly manner. OrganoLabeler can create segmented versions of images with combinations of contrast adjusting, K-means clustering, CLAHE, binary, and Otsu thresholding methods. We created embryoid body and brain organoid data sets, of which segmented images were manually created by human researchers and compared with OrganoLabeler. Validation is performed by training U-Net models, which are deep learning models specialized in image segmentation. U-Net models, which are trained with images segmented by OrganoLabeler, achieved similar or better segmentation accuracies than the ones trained with manually labeled reference images. OrganoLabeler can replace manual labeling, providing faster and more accurate results for organoid research free of charge.
Collapse
Affiliation(s)
- Burak Kahveci
- Izmir International
Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Türkiye
- Izmir Biomedicine
and Genome Center, Izmir 35340, Türkiye
| | - Elifsu Polatli
- Izmir International
Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Türkiye
- Izmir Biomedicine
and Genome Center, Izmir 35340, Türkiye
| | - Yalin Bastanlar
- Department
of Computer Engineering, Izmir Institute
of Technology, Izmir 35430, Türkiye
| | - Sinan Guven
- Izmir International
Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Türkiye
- Izmir Biomedicine
and Genome Center, Izmir 35340, Türkiye
- Faculty
of
Medicine, Medical Biology and Genetics Department, Dokuz Eylul University, Izmir 35340, Türkiye
| |
Collapse
|
6
|
Wu KY, Dave A, Daigle P, Tran SD. Advanced Biomaterials for Lacrimal Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5425. [PMID: 39597252 PMCID: PMC11595815 DOI: 10.3390/ma17225425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
The lacrimal gland (LG) is vital for ocular health, producing tears that lubricate and protect the eye. Dysfunction of the LG leads to aqueous-deficient dry eye disease (DED), significantly impacting quality of life. Current treatments mainly address symptoms rather than the underlying LG dysfunction, highlighting the need for regenerative therapies. Tissue engineering offers a promising solution, with biomaterials playing crucial roles in scaffolding and supporting cell growth for LG regeneration. This review focuses on recent advances in biomaterials used for tissue engineering of the lacrimal gland. We discuss both natural and synthetic biomaterials that mimic the extracellular matrix and provide structural support for cell proliferation and differentiation. Natural biomaterials, such as Matrigel, decellularized extracellular matrices, chitosan, silk fibroin hydrogels, and human amniotic membrane are evaluated for their biocompatibility and ability to support lacrimal gland cells. Synthetic biomaterials, like polyethersulfone, polyesters, and biodegradable polymers (PLLA and PLGA), are assessed for their mechanical properties and potential to create scaffolds that replicate the complex architecture of the LG. We also explore the integration of growth factors and stem cells with these biomaterials to enhance tissue regeneration. Challenges such as achieving proper vascularization, innervation, and long-term functionality of engineered tissues are discussed. Advances in 3D bioprinting and scaffold fabrication techniques are highlighted as promising avenues to overcome current limitations.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Archan Dave
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Patrick Daigle
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
7
|
Şenkal-Turhan S, Bulut-Okumuş E, Aydın M, Başak Türkmen N, Taşlıdere A, Şahin F, Yılmaz Ş, Akkuş Süt P, Doğan A. Induced Pluripotent Stem Cell-Derived Parathyroid Organoids Resemble Parathyroid Morphology and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407567. [PMID: 39331961 DOI: 10.1002/advs.202407567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/12/2024] [Indexed: 09/29/2024]
Abstract
The primary role of the parathyroid glands is to maintain calcium homeostasis through the secretion of parathyroid hormone (PTH). The limited proliferative capacity and differentiation of parathyroid cells hinder the generation of cell therapy options. In this study, parathyroid organoids are successfully generated from human-induced pluripotent stem cells (hiPSCs). At the end of the 20 days of differentiation, the parathyroid organoids exhibited distinct parathyroid morphology. Stereomicroscope, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis demonstrated the 3D arrangement of the cell layers in which intracellular structures of parathyroid cells resemble human parathyroid cellular morphology. Comprehensive molecular analyses, including RNA sequencing (RNA-Seq) and liquid chromatography/mass spectrometry (LC-MS/MS), confirmed the expression of key parathyroid-related markers. Protein expression of CasR, CxCr4, Gcm2, and PTH are observed in parathyroid organoids. Parathyroid organoids secrete PTH, demonstrate active intercellular calcium signaling, and induce osteogenic differentiation via their secretome. The tissue integration potential of parathyroid organoids is determined by transplantation into parathyroidectomized rats. The organoid transplanted animals showed significant elevations in PTH-related markers (CasR, CxCr4, Foxn1, Gcm2, and PTH). PTH secretion is detected in organoid-transplanted animals. The findings represent a significant advancement in parathyroid organoid culture and may offer a cellular therapy for treating PTH-related diseases, including hypoparathyroidism.
Collapse
Affiliation(s)
- Selinay Şenkal-Turhan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| | - Ezgi Bulut-Okumuş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| | - Muhterem Aydın
- Department of Veterinary Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Fırat, Elazığ, 23119, Turkey
| | - Neşe Başak Türkmen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, University of Inonu, Malatya, 44280, Turkey
| | - Aslı Taşlıdere
- Department of Histology and Embryology, Faculty of Medicine, University of Inonu, Malatya, 44280, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| | - Şahin Yılmaz
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| | - Pınar Akkuş Süt
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, 34755, Turkey
| |
Collapse
|
8
|
Stinnett GS, Kuo CH, Ono SJ. Impact of inflammasomes on the ocular surface. Curr Opin Allergy Clin Immunol 2024; 24:368-374. [PMID: 38900843 PMCID: PMC11356675 DOI: 10.1097/aci.0000000000001004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
PURPOSE OF REVIEW The ocular surface is prone to inflammation due to exposure to environmental irritants and pathogens. Inflammasomes are intracellular, multiprotein complexes that communicate potentially dangerous signals to the immune system. The identification of inflammasomes in various inflammatory ocular surface conditions can aid in the development of therapeutics to treat these chronic inflammatory conditions. RECENT FINDINGS Several inflammasomes have been associated with ocular surface disorders including dry eye disease, keratitis, and allergies. Mechanisms for activation of these inflammasomes with regards to specific disorders have been explored in models to aid in the development of targeted treatments. SUMMARY Research efforts continue to characterize the types of inflammasomes and activators of these in inflammatory ocular surface conditions. Various therapies targeting specific inflammasome types or pyroptosis are being tested preclinically to assess effects on decreasing the associated chronic inflammation.
Collapse
Affiliation(s)
- Gwen S. Stinnett
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Chuan-Hui Kuo
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Santa J. Ono
- Departments of Ophthalmology & Visual Science, Microbiology & Immunology and Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Utine CA, Güven S. Tissue Engineering and Ophthalmology. Turk J Ophthalmol 2024; 54:159-169. [PMID: 38940358 PMCID: PMC11589309 DOI: 10.4274/tjo.galenos.2024.49779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/12/2024] [Indexed: 06/29/2024] Open
Abstract
Tissue engineering (TE) is a field of science that combines biological, engineering, and medical sciences and allows the development of disease models, drug development and gene therapy studies, and even cellular or tissue-based treatments developed by engineering methods. The eye is an organ that is easily accessible and amenable to engineering applications, paving the way for TE in ophthalmology. TE studies are being conducted on a wide range of topics, including the tear film, eyelids, cornea, optic nerve, glaucoma, and retinal diseases. With the rapid scientific advances in the field, it seems that TE is radically modifying the management of ocular disorders.
Collapse
Affiliation(s)
- Canan Aslı Utine
- Dokuz Eylul University Faculty of Medicine Department of Ophthalmology, İzmir, Turkiye
- İzmir Biomedicine and Genome Center İzmir, Turkiye
| | - Sinan Güven
- İzmir Biomedicine and Genome Center İzmir, Turkiye
- Dokuz Eylul University İzmir International Biomedicine and Genome Institute, İzmir, Turkiye
- Dokuz Eylul University Faculty of Medicine Department of Medical Biology and Genetics, İzmir, Turkiye
| |
Collapse
|
10
|
Koçak G, Uyulgan S, Polatlı E, Sarı V, Kahveci B, Bursali A, Binokay L, Reçber T, Nemutlu E, Mardinoğlu A, Karakülah G, Utine CA, Güven S. Generation of Anterior Segment of the Eye Cells from hiPSCs in Microfluidic Platforms. Adv Biol (Weinh) 2024; 8:e2400018. [PMID: 38640945 DOI: 10.1002/adbi.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Indexed: 04/21/2024]
Abstract
Ophthalmic diseases affect many people, causing partial or total loss of vision and a reduced quality of life. The anterior segment of the eye accounts for nearly half of all visual impairment that can lead to blindness. Therefore, there is a growing demand for ocular research and regenerative medicine that specifically targets the anterior segment to improve vision quality. This study aims to generate a microfluidic platform for investigating the formation of the anterior segment of the eye derived from human induced pluripotent stem cells (hiPSC) under various spatial-mechanoresponsive conditions. Microfluidic platforms are developed to examine the effects of dynamic conditions on the generation of hiPSCs-derived ocular organoids. The differentiation protocol is validated, and mechanoresponsive genes are identified through transcriptomic analysis. Several culture strategies is implemented for the anterior segment of eye cells in a microfluidic chip. hiPSC-derived cells showed anterior eye cell characteristics in mRNA and protein expression levels under dynamic culture conditions. The expression levels of yes-associated protein and transcriptional coactivator PDZ binding motif (YAP/TAZ) and PIEZO1, varied depending on the differentiation and growth conditions of the cells, as well as the metabolomic profiles under dynamic culture conditions.
Collapse
Affiliation(s)
- Gamze Koçak
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Sude Uyulgan
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Elifsu Polatlı
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Vedat Sarı
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Burak Kahveci
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Ahmet Bursali
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
| | - Leman Binokay
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Canan Aslı Utine
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Department of Ophthalmology, Dokuz Eylül University Hospital, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, 35340, Türkiye
| |
Collapse
|