1
|
Liu T, Pu G, Wang L, Ye Z, Li H, Li R, Li Y, Guo X, Cho WC, Yin H, Zheng Y, Luo X. LncRNA gm40262 promotes liver fibrosis and parasite growth through the gm40262-miR-193b-5p-TLR4/Col1α1 axis. mBio 2025; 16:e0228724. [PMID: 39998227 PMCID: PMC11980551 DOI: 10.1128/mbio.02287-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Alveolar echinococcosis (AE) is a severe and life-threatening parasitic disease caused by Echinococcus multilocularis. Liver fibrosis is a significant pathological feature of advanced AE, characterized by the excessive production and accumulation of extracellular matrix (ECM). However, the precise underlying mechanism remains largely unknown. In this study, we show that the long noncoding RNA gm40262, predominantly expressed in hepatic stellate cells (HSCs), is upregulated in AE. Interestingly, its knockdown leads to liver fibrosis resolution, accompanied by a substantial suppression of parasite growth. Gm40262 functions by targeting miR-193b-5p to activate HSCs and stimulate their proliferation in a TGF-β-dependent manner, thereby promoting ECM production by upregulating Col1α1. Moreover, gm40262 is also involved in inflammation through the gm40262-miR-193b-5p-TLR4 axis. Our findings suggest that gm40262 plays a pivotal role in parasite-induced liver fibrosis through multiple mechanisms, highlighting its potential as a therapeutic target for hepatic fibrosis. IMPORTANCE Echinococcus multilocularis is a tiny parasite with significant medical implications. The chronic parasitism of E. multilocularis in the liver generally leads to liver fibrosis, but the underlying mechanisms are poorly understood. We herein show that gm40262, a long noncoding RNA predominantly expressed in hepatic stellate cells (HSCs), is involved in hepatic fibrogenesis during infection by activating HSCs and promoting extracellular matrix production. The gm40262-orchestrating fibrogenesis occurs through the gm40262-miR-193b-5p-TLR4 and gm40262-miR-193b-5p-Col1α1 axes. The knockdown of gm40262 remarkably alleviates liver fibrosis, with decreased parasite growth. Our findings reveal a key role of gm40262 in liver fibrosis during E. multilocularis infection, rendering it a therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Tingli Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
- Department of Medical Laboratory, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Guiting Pu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
| | - Liqun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
| | - Ziyu Ye
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang province, China
| | - Hong Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang province, China
| | - Yanping Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
| | - Xiaola Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang province, China
| | - Xuenong Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Gellée N, Legrand N, Jouve M, Devaux PJ, Dubuquoy L, Sobolewski C. Tristetraprolin Family Members and Processing Bodies: A Complex Regulatory Network Involved in Fatty Liver Disease, Viral Hepatitis and Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:348. [PMID: 39941720 PMCID: PMC11815756 DOI: 10.3390/cancers17030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Chronic liver diseases, such as those encountered with obesity, chronic/abusive alcohol consumption or viral infections, represent not only major public health concerns with limited therapeutic options but also important risk factors for the onset of hepatocellular carcinoma (HCC). Deciphering the molecular traits underlying these disorders is of high interest for designing new and effective treatments. The tristetraprolin (TTP) family members are of particular importance given their ability to control the expression of a wide range of genes involved in metabolism, inflammation and carcinogenesis at the post-transcriptional level. This regulation can occur within small cytoplasmic granules, namely, processing bodies (P-bodies), where the mRNA degradation occurs. Increasing evidence indicates that TTP family members and P-bodies are involved in the development of chronic liver diseases and cancers. In this review, we discuss the role of this regulatory mechanism in metabolic-dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), hepatic viral infections and HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Cyril Sobolewski
- Univ Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (N.G.); (N.L.); (M.J.); (L.D.)
| |
Collapse
|
3
|
Pu G, Li Y, Liu T, Li H, Wang L, Chen G, Cao S, Yin H, Amuda TO, Guo X, Luo X. mmu-miR-374b-5p modulated inflammatory factors via downregulation of C/EBP β/NF-κB signaling in Kupffer cells during Echinococcus multilocularis infection. Parasit Vectors 2024; 17:163. [PMID: 38553755 PMCID: PMC10981327 DOI: 10.1186/s13071-024-06238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Alveolar echinococcosis (AE) is an important infectious disease caused by the metacestode larvae of Echinococcus multilocularis, seriously threatening global public health security. Kupffer cells (KCs) play important roles in liver inflammatory response. However, their role in hepatic alveolar echinococcosis has not yet been fully elucidated. METHODS In this study, qRT-PCR was used to detect the expression level of miR-374b-5p in KCs. The target gene of miR-374b-5p was identified through luciferase reporter assays and loss of function and gains. Critical genes involved in NFκB signaling pathway were analyzed by qRT-PCR and western blot. RESULTS This study reported that miR-374b-5p was significantly upregulated in KCs during E. multilocularis infection and further showed that miR-374b-5p was able to bind to the 3'-UTR of the C/EBP β gene and suppressed its expression. The expression levels of NF-κBp65, p-NF-κBp65 and pro-inflammatory factors including iNOS, TNFα and IL6 were attenuated after overexpression of miR-374b-5p while enhanced after suppression of miR-374b-5p. However, the Arg1 expression level was promoted after overexpression of miR-374b-5p while suppressed after downregulation of miR-374b-5p. Additionally, increased protein levels of NF-κBp65 and p-NF-κBp65 were found in the C/EBP β-overexpressed KCs. CONCLUSIONS These results demonstrated that miR-374b-5p probably regulated the expression of inflammatory factors via C/EBP β/NF-κB signaling. This finding is helpful to explore the mechanism of inflammation regulation during E. multilocularis infection.
Collapse
Affiliation(s)
- Guiting Pu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Yanping Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Tingli Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Hong Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Liqun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Guoliang Chen
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Shanling Cao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Tharheer Oluwashola Amuda
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Xiaola Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China.
| | - Xuenong Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, Gansu Province, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
4
|
Tuergan T, Zhang R, Chen X, Aihemaiti N, Guo X, Ran B, Jiang T, Guo Q, Aji T. LncRNA Regulation Mechanism in Hepatic Alveolar Echinococcosis with Nanosecond Pulse. Acta Parasitol 2023:10.1007/s11686-023-00672-3. [PMID: 37103765 DOI: 10.1007/s11686-023-00672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/08/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND The mortality of patients infected with hepatic alveolar echinococcosis (HAE) was higher. The aim of this study was to investigate the therapeutic effect of nanosecond pulsed electric fields (nsPEFs) on HAE in rats and explore the related molecular mechanisms. METHODS Establishment of HAE rat model and the lesions were treated with nsPEFs. The RNA of lesions in the high voltage nsPEFs treatment group and model group were extracted, and lncRNA and mRNA sequence analyses was performed. After obtaining the differentially expressed lncRNAs and mRNAs between the two groups, enrichment analysis was performed for mRNAs. The target genes of lncRNAs were predicted through co-location and co-expression. The expression of important lncRNAs and target genes in lesions was detected by qPCR. RESULTS The HAE rat model was successfully established. After nsPEFs treatment, the size of lesions was improved significantly. Then, we identified 270 differentially expressed lncRNAs and 1659 differentially expressed mRNAs between the high voltage nsPEFs treatment group and model group. Enrichment analysis showed that the differentially expressed mRNAs were mainly enriched in metabolism and inflammation. Five important lncRNAs regulatory networks were identified, then Cpa1, Cpb1, Cel, Cela2a, and Cela3b were identified as key target genes. Importantly, the expression of 5 lncRNAs and 5 target genes was verified in the lesions. CONCLUSIONS Preliminary results had shown that HAE treatment with nsPEFs can inhibit the growth of lesions. NsPEFs treatment altered gene expression in the lesions, and some genes were regulated by lncRNAs. The therapeutic mechanism may involve metabolism and inflammation.
Collapse
Affiliation(s)
- Talaiti Tuergan
- Xinjiang Medical University Affiliated First Hospital, Ürümqi, China
| | - Ruiqing Zhang
- Xinjiang Medical University Affiliated First Hospital, Ürümqi, China
| | - Xinhua Chen
- Xinjiang Medical University Affiliated First Hospital, Ürümqi, China
| | | | - Xiaozhe Guo
- Xinjiang Medical University Affiliated First Hospital, Ürümqi, China
| | - Bo Ran
- Xinjiang Medical University Affiliated First Hospital, Ürümqi, China
| | - Tiemin Jiang
- Xinjiang Medical University Affiliated First Hospital, Ürümqi, China
| | - Qiang Guo
- Xinjiang Medical University Affiliated First Hospital, Ürümqi, China
| | - Tuerganaili Aji
- Xinjiang Medical University Affiliated First Hospital, Ürümqi, China.
| |
Collapse
|