1
|
Good SL, Antwi-Boasiako C, González-Alvarez ME, Buol BM, Baumgard LH, Keating AF, Charbonnet JA. Distribution of perfluorooctanoic acid in exposed female postpubertal pigs in thermal neutral or heat-stressed conditions. Toxicol Sci 2025; 205:143-153. [PMID: 39901320 PMCID: PMC12038237 DOI: 10.1093/toxsci/kfaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025] Open
Abstract
Perfluorooctanoic acid (PFOA), a legacy perfluoroalkyl substance with immuno- and repro-toxicant effects, has poorly characterized bioaccumulation and distribution patterns in postpubertal female pigs. The potential for heat stress (HS) to influence PFOA partitioning, potentially through intestinal hyperpermeability and alterations in systemic blood flow, also warrants investigation. This study investigated PFOA uptake, accumulation, and distribution in thermal neutral (TN) and heat-stressed gilts. Pigs (n = 48) were estrus synchronized and experienced TN (20 °C) or HS (26.6 to 32.2 °C) conditions during which they consumed 70 ng/kg bodyweight PFOA via cookie dough as vehicle control daily. Plasma was collected on d 1, 15, and 20. Liver, ovary, and follicular fluid were collected at euthanasia (d 20). Post-exposure, PFOA was detected in serum, liver, ovary, and follicular fluid. HS increased (P < 0.05) plasma PFOA compared with TN pigs on d 15, but on d 20, plasma PFOA levels in TN and HS pigs were similar. Liver PFOA concentrations were similar between TN and HS pigs. Ovarian PFOA levels tended (P = 0.06) to be higher in TN relative to HS pigs, with an opposing pattern in follicular fluid, in which PFOA concentrations were greater (P < 0.05) in HS pigs. These findings suggest that PFOA apportions to plasma, liver, ovary, and follicular fluid of exposed pigs and that HS alters PFOA distribution, which could negatively impact reproductive health. This study underscores the need to consider the interaction of HS and toxicant exposure in environmental health risk assessments.
Collapse
Affiliation(s)
- Samantha L Good
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, United States
| | | | | | - Bridget M Buol
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Joseph A Charbonnet
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
2
|
Tao A, Wu T, Han X, Niu D, Feng X. Lipidomics Reveals Common Mechanisms in Polycystic Ovarian Syndrome, Recurrent Spontaneous Abortion, and Infertility: A Genetic-Based Analysis. Int J Womens Health 2025; 17:1055-1065. [PMID: 40247856 PMCID: PMC12005215 DOI: 10.2147/ijwh.s514221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
Background Polycystic ovary syndrome (PCOS), infertility, and recurrent spontaneous abortion (RSA) pose significant challenges to women's reproductive health. While dyslipidemia plays a critical role in these conditions, the causal relationships between specific lipids and these pathologies, as well as their shared mechanisms, remain unclear. Methods We conducted genome-wide association studies (GWAS) to identify genetic variants associated with 179 plasma lipid species and obtained outcome data for PCOS, infertility, and RSA from the FinnGen R10 database. Mendelian randomization (MR) was performed with genetic variants as instrumental variables (IVs) to assess causal relationships. The inverse variance weighted (IVW) method was the primary approach in our two-sample MR study. Robustness was validated through assessments of heterogeneity, pleiotropy, and leave-one-out analyses. Results IVW analysis identified 17 plasma lipid species significantly associated with PCOS risk (P < 0.05), including sphingomyelin (d38:2) (OR = 0.909, 95% CI: 0.835-0.990, P = 0.0277) and triacylglycerol (48:2) (OR = 1.291, 95% CI: 1.097-1.518, P = 0.0020). Similarly, 15 lipid species were significantly associated with infertility risk (P < 0.05), such as sphingomyelin (d36:2) (OR = 0.926, 95% CI: 0.888-0.966, P = 0.0003) and triacylglycerol (48:2) (OR = 1.122, 95% CI: 1.059-1.188, P < 0.0001). Two lipid species, phosphatidylinositol (18:0_20:4) (OR = 0.790, 95% CI: 0.693-0.900, P = 0.0004) and sphingomyelin (d42:2) (OR = 0.779, 95% CI: 0.672-0.903, P = 0.0009), showed significant inverse associations with RSA risk, suggesting protective effects. Conclusion This study establishes causal relationships between specific lipid species and the risk of PCOS, infertility, and RSA, emphasizing lipid metabolism dysregulation as a common pathological mechanism underlying these reproductive disorders. Targeting lipids may offer a promising therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Ailin Tao
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Tianqiang Wu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Xinyu Han
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Dingren Niu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Tan Z, Wu T, Wang M, Chen L, Li Y, Zhang M, Zhang Y, Sun L. Downregulation of FASN in granulosa cells and its impact on ovulatory dysfunction in PCOS. J Ovarian Res 2025; 18:67. [PMID: 40170064 PMCID: PMC11959749 DOI: 10.1186/s13048-025-01645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/12/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complicated endocrinological and anovulatory disorder in women. Mice exposed to dihydrotestosterone (DHT) exhibit a PCOS-like phenotype characterized by abnormal steroid hormone production and ovulation dysfunction. The present investigation aims to identify overlapping genes expressed in PCOS patients and a PCOS mouse model induced by DHT and to examine the function of key genes fatty acid synthase (FASN) in hormone production and ovulation dysfunction. RESULTS We examined 5 datasets of high-throughput mRNA transcription from the Gene Expression Omnibus (GEO) database, including 4 datasets from individuals with PCOS and 1 dataset from a DHT-induced mouse model. GO and KEGG enrichment analyses revealed these differentially expressed genes (DEGs) are primarily involved in ovarian steroidogenesis and fatty acid metabolism. The PPI network identified 12 hub genes. qRT-PCR verification in human granulosa cells showed differential expression of FASN, SCARB1, FABP5, RIMS2, and RAPGEF4 in PCOS patients (p < 0.05). FASN was downregulated in the granulosa cells (GCs) of PCOS patients (p < 0.05). FASN depletion reduced KGN cell proliferation (p < 0.001), decreased progesterone secretion (p < 0.05), and increased estradiol secretion (p < 0.05). Downregulation of FASN inhibited ovulation by suppressing ERK1/2 phosphorylation and the expression of C/EBPα and C/EBPβ. Lentivirus-mediated FASN downregulation in rat ovaries for one and four weeks impaired the super ovulatory response, reducing oocyte retrieval, estrous cycle, secretion of estrogen and progesterone, and luteinization. CONCLUSIONS Our results provide new insights into PCOS pathogenesis and suggest that FASN could be a promising target for treating abnormal steroid hormone production and impaired ovulation in PCOS.
Collapse
Affiliation(s)
- Zhaoping Tan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Tiancheng Wu
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Liang Chen
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Yating Li
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuanzhen Zhang
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, People's Republic of China.
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| | - Lili Sun
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Yuan X, Zhang X, Lin Y, Xie H, Wang Z, Hu X, Hu S, Li L, Liu H, He H, Han C, Gan X, Liao L, Xia L, Hu J, Wang J. Proteome of granulosa cells lipid droplets reveals mechanisms regulating lipid metabolism at hierarchical and pre-hierarchical follicle in goose. Front Vet Sci 2025; 12:1544718. [PMID: 40230795 PMCID: PMC11995638 DOI: 10.3389/fvets.2025.1544718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Avian hierarchical follicles are formed by selection and dominance of pre-hierarchical follicles, and lipid metabolism plays a pivotal role in this process. The amount of lipid in goose follicular granulosa cells increases with the increase of culture time, and the neutral lipid in the cells is stored in the form of lipid droplets (LDs). LD-associated proteins (LDAPs) collaborate with LDs to regulate intracellular lipid homeostasis, which subsequently influences avian follicle development. The mechanism by which LDAPs regulate lipid metabolism in goose granulosa cells at different developmental stages is unclear. Therefore, using BODIPY staining, we found that at five time points during in vitro culture, the LD content in hierarchical granulosa cells was significantly higher than that in pre-hierarchical granulosa cells in this study (p < 0.001). Next, we identified LDAPs in both hierarchical and pre-hierarchical granulosa cells, and screened out 1,180, 922, 907, 663, and 1,313 differentially expressed proteins (DEPs) at the respective time points. Subsequently, by performing Clusters of Orthologous Groups (COGs) classification on the DEPs, we identified a large number of proteins related to lipid transport and metabolism. Following this, the potential functions of these DEPs were investigated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis. Finally, the important pathway of fatty acid degradation and the key protein ACSL3 were screened out using Short Time-series Expression Miner (STEM) and Protein-Protein Interaction (PPI) analysis methods. It is hypothesized that ACSL3 may potentially modulate lipid metabolism through the fatty acid degradation pathway, thereby contributing to the difference in lipid content between hierarchical and pre-hierarchical granulosa cells. These findings will provide a theoretical foundation for further studies on the role of LDs and LDAPs in avian follicle development.
Collapse
Affiliation(s)
- Xin Yuan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xi Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yueyue Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengli Xie
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhujun Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinyue Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiang Gan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lu Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Chen YR, Yin WW, Jin YR, Lv PP, Jin M, Feng C. Current status and hotspots of in vitro oocyte maturation: a bibliometric study of the past two decades. J Assist Reprod Genet 2025; 42:459-472. [PMID: 39317914 PMCID: PMC11871283 DOI: 10.1007/s10815-024-03272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
PURPOSE In vitro maturation (IVM) of oocytes is a promising technique among assisted reproductive technologies. Although IVM has been used for many years, its efficiency is still relatively low compared to that of traditional in vitro fertilization (IVF) procedures. Therefore, we aimed to explore the hotspots and frontiers of IVM research over the past two decades and provide direction for IVM advancement. METHODS The articles and reviews related to IVM in the Web of Science Core Collection (WoSCC) were retrieved on June 03, 2024. Three bibliometric tools, VOSviewer 1.6.18 (2010), CiteSpace 6.1. R6 (2006), and Bibliometrix R package 4.1.0 (2017), were used to generate network maps and explore knowledge frontiers and trends. To uncover the latest research advancements and frontiers in the IVM field, we conducted an analysis of the entire IVM field, including all species. Given our focus on human IVM developments, we identified the leading countries, institutions, authors, and journals driving progress in human IVM. RESULTS A total of 5150 publications about IVM and 1534 publications in the specific context of human IVM were retrieved from the WoSCC. The number of publications on both overall IVM and human IVM fields has increased steadily. In human IVM, the United States (USA) and McGill University were the most prolific country and institution, respectively. Human Reproduction was both the most published in and the most cited journal in human IVM. Seang Lin, Tan was the most productive author, and Ri-Cheng, Chian's papers were the most cited in human IVM. Furthermore, five hotspot topics were summarized, namely, culture system, supplementation, cooperation in the ovarian follicle, gene expression, and oocyte cryopreservation. CONCLUSIONS Further studies could concentrate on the following topics: (1) the mechanisms involved in oocyte maturation in vivo and in vitro, especially in energy metabolism and intercellular communications; (2) the establishment of IVM culture systems, including standardization of the biphasic IVM culture system and supplementation; (3) the genetic differences between oocytes matured in vivo and in vitro; and (4) the mechanism of cryopreservation-inflicted damage and solutions to this challenge. For human IVM, it is necessary to precisely assess the developmental stages of oocytes and adjust the IVM process accordingly to develop tailored culture media. Concurrently, clinical trials are essential for evaluating the effectiveness and safety of IVM.
Collapse
Affiliation(s)
- Yi-Ru Chen
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Wei-Wei Yin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yi-Ru Jin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ping-Ping Lv
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Jin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Chun Feng
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
6
|
Yang J, Wang J, Cheng R, Liao T, Pan S, Du M, Liu W, Yan L, Zhang S, Zhang X. Microseparation of Lipophilic and Hydrophilic Metabolites for Single Oocyte Mass Spectrometry Analysis. Anal Chem 2025; 97:1704-1710. [PMID: 39800910 DOI: 10.1021/acs.analchem.4c04900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Single-cell metabolic analysis has not yet achieved the coverage of bulk analysis due to the diversity of cellular metabolites and the ionization competition among species. Direct ionization methods without separation lead to the masking of low-intensity species. By designing a capillary column emitter and introducing reverse-phase chromatography principles, we achieved the microseparation of lipophilic and hydrophilic metabolites and lowered the limit of detection of hydrophilic metabolites to the level of a single oocyte. We identified 517 metabolite species in a single oocyte, achieving coverage and reproducibility comparable to those of bulk analysis. By comparing oocytes at different maturation stages, 76 metabolic features were identified with significant differences between the germinal vesicle and meiosis II stages. Metabolite level changes suggested the roles of lipid metabolism remodeling, increased amino acid synthesis, and a shift from pyrimidine metabolism to purine metabolism in the process of oocyte maturation. This microseparation mass spectrometry analysis is expected to promote single-cell metabolomics.
Collapse
Affiliation(s)
- Jinlei Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jing Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Runsong Cheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianyi Liao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Siyuan Pan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Murong Du
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weiliang Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Zhang Y, Lu C, Li L, Li H. Non-high-density to high-density lipoprotein cholesterol ratio and its association with infertility in U.S. women: a cross-sectional study. Front Endocrinol (Lausanne) 2025; 15:1451494. [PMID: 39877843 PMCID: PMC11772178 DOI: 10.3389/fendo.2024.1451494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Objective To investigate the relationship between Non-High-Density Lipoprotein Cholesterol to High-Density Lipoprotein Cholesterol Ratio (NHHR) and infertility in US female adults aged 20 to 45. Methods Our research team utilized data from the 2013-2018 National Health and Nutrition Examination Survey (NHANES) to conduct a cross-sectional study. Multivariable logistic regression was conducted to examine the association between NHHR and infertility, with trend tests providing additional insight into this relationship. Further, smoothed curve fitting was applied for a more detailed exploration. To ensure the robustness of our results, we conducted subgroup and sensitivity analyses. Results Between 2013 and 2018, our study included 2,947 participants, with 342(11.6%) self-reported infertility. A positive association was found between NHHR and infertility (OR=1.17,95%CI:1.07-1.27). Compared with the first trimester, the third trimester of NHHR was associated with an OR of 1.79(95% CI: 1.31-2.44) in model 3. The results of subgroup analyses revealed that the association between NHHR and infertility was nearly consistent. Conclusion NHHR demonstrated a positive correlation with infertility among U.S. female adults. Further investigation is needed to explore their association better and the underlying mechanisms.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Hongyu Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Ma H, Gao G, Palti Y, Tripathi V, Birkett JE, Weber GM. Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro. Int J Mol Sci 2024; 25:12683. [PMID: 39684392 DOI: 10.3390/ijms252312683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Gonadotropins and progestins are the primary regulators of follicle maturation and ovulation in fish, and they require complex communication among the oocyte and somatic cells of the follicle. The major progestin and the maturation-inducing hormone in salmonids is 17α,20β-dihdroxy-4-pregnen-3-one (17,20βP), and traditional nuclear receptors and membrane steroid receptors for the progestin have been identified within the follicle. Herein, RNA-seq was used to conduct a comprehensive survey of changes in gene expression throughout the intact follicle in response to in vitro treatment with these hormones to provide a foundation for understanding the coordination of their actions in regulating follicle maturation and preparation for ovulation. A total of 5292 differentially expressed genes were identified from our transcriptome sequencing datasets comparing four treatments: fresh tissue; untreated control; 17,20βP-treated; and salmon pituitary homogenate-treated follicles. Extensive overlap in affected genes suggests many gonadotropin actions leading to the acquisition of maturational and ovulatory competence are mediated in part by gonadotropin induction of 17,20βP synthesis. KEGG analysis identified signaling pathways, including MAPK, TGFβ, FoxO, and Wnt signaling pathways, among the most significantly enriched pathways altered by 17,20βP treatment, suggesting pervasive influences of 17,20βP on actions of other endocrine and paracrine factors in the follicle complex.
Collapse
Affiliation(s)
- Hao Ma
- US Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA 50010, USA
| | - Guangtu Gao
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Yniv Palti
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Vibha Tripathi
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Jill E Birkett
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Gregory M Weber
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
9
|
Sigal E, Shavit M, Atzmon Y, Aslih N, Bilgory A, Estrada D, Michaeli M, Rotfarb N, Shibli Abu-Raya Y, Meisel-Sharon S, Shalom-Paz E. Excess Weight Impairs Oocyte Quality, as Reflected by mtDNA and BMP-15. Cells 2024; 13:1872. [PMID: 39594620 PMCID: PMC11593194 DOI: 10.3390/cells13221872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
This prospective, case-control study evaluated the impact of obesity on oocyte quality based on mtDNA expression in cumulus cells (CC), and on bone morphogenetic protein 15 (BMP-15) and heparan sulfate proteoglycan 2 (HSPG2) in follicular fluid (FF). It included women 18 to <40 years of age, divided according to BMI < 24.9 (Group 1, n = 28) and BMI > 25 (Group 2, n = 22). Demographics, treatment, and pregnancy outcomes were compared. The mtDNA in CC, BMP-15, HSPG2, the lipid profile, the hormonal profile, and C-reactive protein were evaluated in FF and in blood samples. The BMP-15 levels in FF and the mitochondrial DNA in CC were higher in Group 1 (38.8 ± 32.5 vs. 14.3 ± 10.8 ng/mL; p = 0.001 and 1.10 ± 0.3 vs. 0.87 ± 0.18-fold change; p = 0.016, respectively) than in Group 2. High-density lipoprotein levels in blood and FF were higher in Group 1 (62 ± 18 vs. 50 ± 12 mg/dL; p = 0.015 and 34 ± 26 vs. 20.9 ± 7.2 mg/dL; p = 0.05, respectively). Group 2 had higher blood C-reactive protein (7.1 ± 5.4 vs. 3.4 ± 4.3 mg/L; p = 0.015), FF (5.2 ± 3.8 vs. 1.5 ± 1.6 mg/L; p = 0.002) and low-density lipoprotein levels (91 ± 27 vs. 71 ± 22 mg/dL; p = 0.008) vs. Group 1. Group 1 demonstrated a trend toward a better clinical pregnancy rate (47.8% vs. 28.6%: p = 0.31) and frozen embryo transfer rate (69.2% vs. 53.8; p = 0.69). Higher BMI resulted in lower BMP-15 levels and reduced mtDNA expression, which reflect decreased oocyte quality in overweight women.
Collapse
Affiliation(s)
- Emiliya Sigal
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel; (M.S.); (Y.A.); (N.A.); (A.B.); (D.E.); (M.M.); (N.R.); (Y.S.A.-R.); (S.M.-S.); (E.S.-P.)
- A Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Maya Shavit
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel; (M.S.); (Y.A.); (N.A.); (A.B.); (D.E.); (M.M.); (N.R.); (Y.S.A.-R.); (S.M.-S.); (E.S.-P.)
- A Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Yuval Atzmon
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel; (M.S.); (Y.A.); (N.A.); (A.B.); (D.E.); (M.M.); (N.R.); (Y.S.A.-R.); (S.M.-S.); (E.S.-P.)
- A Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Nardin Aslih
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel; (M.S.); (Y.A.); (N.A.); (A.B.); (D.E.); (M.M.); (N.R.); (Y.S.A.-R.); (S.M.-S.); (E.S.-P.)
- A Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Asaf Bilgory
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel; (M.S.); (Y.A.); (N.A.); (A.B.); (D.E.); (M.M.); (N.R.); (Y.S.A.-R.); (S.M.-S.); (E.S.-P.)
- A Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Daniella Estrada
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel; (M.S.); (Y.A.); (N.A.); (A.B.); (D.E.); (M.M.); (N.R.); (Y.S.A.-R.); (S.M.-S.); (E.S.-P.)
| | - Mediea Michaeli
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel; (M.S.); (Y.A.); (N.A.); (A.B.); (D.E.); (M.M.); (N.R.); (Y.S.A.-R.); (S.M.-S.); (E.S.-P.)
| | - Nechama Rotfarb
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel; (M.S.); (Y.A.); (N.A.); (A.B.); (D.E.); (M.M.); (N.R.); (Y.S.A.-R.); (S.M.-S.); (E.S.-P.)
| | - Yasmin Shibli Abu-Raya
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel; (M.S.); (Y.A.); (N.A.); (A.B.); (D.E.); (M.M.); (N.R.); (Y.S.A.-R.); (S.M.-S.); (E.S.-P.)
- A Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Shilhav Meisel-Sharon
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel; (M.S.); (Y.A.); (N.A.); (A.B.); (D.E.); (M.M.); (N.R.); (Y.S.A.-R.); (S.M.-S.); (E.S.-P.)
| | - Einat Shalom-Paz
- IVF Unit, Department of Obstetrics and Gynecology, Hillel-Yaffe Medical Center, Hadera 3820302, Israel; (M.S.); (Y.A.); (N.A.); (A.B.); (D.E.); (M.M.); (N.R.); (Y.S.A.-R.); (S.M.-S.); (E.S.-P.)
- A Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
10
|
Chen Y, Wu Y, Pi J, Fu M, Shen J, Zhang H, Du J. tsRNA-00764 Regulates Estrogen and Progesterone Synthesis and Lipid Deposition by Targeting PPAR-γ in Duck Granulosa Cells. Int J Mol Sci 2024; 25:11251. [PMID: 39457032 PMCID: PMC11508606 DOI: 10.3390/ijms252011251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are novel regulatory small non-coding RNAs that have been found to modulate many life activities in recent years. However, the exact functions of tsRNAs in follicle development remain unclear. Follicle development is a remarkably complex process that follows a strict hierarchy and is strongly associated with reproductive performance in ducks. The process of converting small yellow follicles into hierarchal follicles is known as follicle selection, which directly determines the number of mature follicles. We performed small RNA sequencing during follicle selection in ducks and identified tsRNA-00764 as the target of interest based on tsRNA expression profiles in this study. Bioinformatics analyses and luciferase reporter assays further revealed that peroxisome proliferator-activated receptor-γ (PPAR-γ) was the target gene of tsRNA-00764. Moreover, tsRNA-00764 knockdown promoted estrogen and progesterone synthesis and lipid deposition in duck granulosa cells, while a PPAR-γ inhibitor reversed the above phenomenon. Taken together, these results demonstrate that tsRNA-00764, differentially expressed in pre-hierarchal and hierarchy follicles, modulates estrogen and progesterone synthesis and lipid deposition by targeting PPAR-γ in duck granulosa cells, serving as a potential novel mechanism of follicle selection. Overall, our findings provide a theoretical foundation for further exploration of the molecular mechanisms underlying follicle development and production performance in ducks.
Collapse
Affiliation(s)
- Yaru Chen
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.C.); (M.F.); (J.S.); (H.Z.); (J.D.)
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Yan Wu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.C.); (M.F.); (J.S.); (H.Z.); (J.D.)
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Jinsong Pi
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.C.); (M.F.); (J.S.); (H.Z.); (J.D.)
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Ming Fu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.C.); (M.F.); (J.S.); (H.Z.); (J.D.)
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Jie Shen
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.C.); (M.F.); (J.S.); (H.Z.); (J.D.)
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Hao Zhang
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.C.); (M.F.); (J.S.); (H.Z.); (J.D.)
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Jinping Du
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.C.); (M.F.); (J.S.); (H.Z.); (J.D.)
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| |
Collapse
|
11
|
Zhao W, Liu K, Zhang Y, Sun P, Zeringue E, Meng L, Ma H. The efficacy of orally administered L-carnitine in alleviating ovarian dysfunctions has laid the foundation for targeted in vivo use: a study employing self-control and propensity score matching. Front Endocrinol (Lausanne) 2024; 15:1440182. [PMID: 39359417 PMCID: PMC11445680 DOI: 10.3389/fendo.2024.1440182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Objective This study aimed to evaluate the effectiveness of oral L-carnitine administration in patients after treatment failure to lay the groundwork for targeted in vivo use. Methods and materials A total of 515 In Vitro Fertilization (IVF) patients undergoing subsequent cycles were included after applying exclusion criteria. They were divided into a control group of 362 patients and a study group of 153 patients who received oral L-carnitine until oocyte retrieval.140 patients were matched according to maternal age, infertility duration, body mass index (BMI), day three top-quality embryos rate, by propensity score matching (PSM). The study investigated the relationship between L-carnitine treatment and in vivo oocyte maturation, normal fertilization, and subsequent embryo development. Results Following PSM, initial differences in BMI and Day3 top-quality embryo rate between groups were nullified, we created two comparable cohorts with highly similar characteristics. In the subsequent cycles, the study group showed significant improvements in in vivo oocyte maturation rate at retrieval (p=0.002), normal in vitro fertilization rate (p=0.003), blastocyst formation rate (p=0.003), and usable blastocyst rate compared to controls. Although there was no significant difference in the top-quality embryo rate on Day 3, the study group showed a 10% increase in the upper quartile (55.35% vs. 66.67%). The cumulative clinical pregnancy and live birth rates showed a significant improvement (59.82% vs. 68.42%,p=0.004, 47.41% vs. 59.80%, p=0.002). Furthermore, self-control analysis revealed substantial enhancements (p<0.001) in all outcome measures following L-carnitine administration, resulting in the birth of 74 healthy neonates without congenital anomalies. Conclusion We theorized that daily oral intake of L-carnitine before oocyte retrieval could boost oocyte quality and embryonic development, thus improving IVF outcomes. Ongoing investigations hold the potential to offer valuable insights into the applications and mechanisms underlying the therapeutic effectiveness of L-carnitine.
Collapse
Affiliation(s)
- Wenjie Zhao
- Reproductive Medicine Center, Weifang People’s Hospital, Weifang, Shandong, China
| | - Kunkun Liu
- Reproductive Medicine Center, Weifang People’s Hospital, Weifang, Shandong, China
| | - Yuhua Zhang
- Reproductive Medicine Center, Weifang People’s Hospital, Weifang, Shandong, China
| | - Pingping Sun
- Reproductive Medicine Center, Weifang People’s Hospital, Weifang, Shandong, China
| | - Ernest Zeringue
- IVF Laboratories, California IVF Fertility Center, Sacramento, CA, United States
| | - Li Meng
- IVF Laboratories, California IVF Fertility Center, Sacramento, CA, United States
| | - Huagang Ma
- Reproductive Medicine Center, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
12
|
Li T, Wei Y, Jiao B, Hao R, Zhou B, Bian X, Wang P, Zhou Y, Sun X, Zhang J. Bushen Huoxue formula attenuates lipid accumulation evoking excessive autophagy in premature ovarian insufficiency rats and palmitic acid-challenged KGN cells by modulating lipid metabolism. Front Pharmacol 2024; 15:1425844. [PMID: 39351088 PMCID: PMC11439644 DOI: 10.3389/fphar.2024.1425844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Premature ovarian insufficiency (POI) has affected about 3.7% of women of reproductive age and is a major factor contributing to infertility. Bushen Huoxue formula (BHF), a traditional Chinese medicine prescription, is clinically used to treat POI in China. This study aims to investigate the potential mechanisms of BHF in combating POI using corticosterone-induced rats and palmitic acid (PA)-challenged human ovarian granulosa cells (GCs). Methods Initially, ultra performance liquid chromatography tandem mass spectrometry was employed to analyze the components of BHF. The pharmacodynamic parameters evaluated included body weight, ovaries index, and serum hormone in rats. Follicle numbers were observed using H&E staining. Additionally, PCNA and TUNEL staining were used to assess GCs proliferation and apoptosis, respectively. Lipid accumulation and ROS levels were examined using Oil Red O and ROS staining. Protein expressions were determined by western blot. To probe mechanisms, cell viability and E2 levels in BHF-treated, PA-stimulated GCs were determined using MTT and ELISA, respectively. Cell apoptosis and ROS levels were assessed using TUNEL and ROS staining. Proteins related to lipid metabolism and autophagy in PA-stimulated GCs were studied using agonists. Results Our results shown that BHF effectively normalized serum hormone levels, including follicle-stimulating hormone (FSH), anti-Müllerian hormone (AMH), estradiol (E2), and luteinizing hormone (LH). Concurrently, BHF also significantly reduced follicular atresia and promoted cell proliferation while inhibiting apoptosis in POI rats. Furthermore, BHF mitigated ovarian lipid accumulation by modulating lipid metabolism, which included reducing lipid synthesis (expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer binding protein α), increasing lipid catabolism (expression of adipose triglyceride lipase), and enhancing lipid oxidation (expression of carnitine palmitoyl transferase 1A). Mechanistically, the therapeutic effects of BHF on POI were linked with alleviation of lipid deposition-induced reactive oxygen species (ROS) accumulation and excessive autophagy, corroborating the results in PA-challenged GCs. After treatment with elesclomol (a ROS inducer) and rapamycin (an autophagy inducer) in GCs, the effects of BHF were almost counteracted under model conditions. Conclusion These findings suggest that BHF alleviates the symptoms of POI by altering lipid metabolism and reducing lipid accumulation-induced ROS and autophagy, offering evidence for BHF's efficacy in treating POI clinically.
Collapse
Affiliation(s)
- Tian Li
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Yao Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beibie Jiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Tonglu Hospital of Traditional Chinese Medicine, Tonglu, China
| | - Rui Hao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beibei Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinlan Bian
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Peijuan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yahong Zhou
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xia Sun
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Clinical College of Traditional Chinese Medicine Hospital in Lishui, Jiangsu Health Vocational College, Nanjing, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Dai M, Hong L, Yin T, Liu S. Disturbed Follicular Microenvironment in Polycystic Ovary Syndrome: Relationship to Oocyte Quality and Infertility. Endocrinology 2024; 165:bqae023. [PMID: 38375912 DOI: 10.1210/endocr/bqae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with infertility and poor reproductive outcomes. The follicular fluid (FF) microenvironment plays a crucial role in oocyte development. This review summarizes evidence elucidating the alterations in FF composition in PCOS. Various studies demonstrated a pronounced proinflammatory milieu in PCOS FF, characterized by increased levels of cytokines, including but not limited to interleukin-6 (IL-6), tumor necrosis factor α, C-reactive protein, and IL-1β, concomitant with a reduction in anti-inflammatory IL-10. T lymphocytes and antigen-presenting cells are dysregulated in PCOS FF. PCOS FF exhibit heightened reactive oxygen species production and the accumulation of lipid peroxidation byproducts, and impaired antioxidant defenses. Multiple microRNAs are dysregulated in PCOS FF, disrupting signaling critical to granulosa cell function. Proteomic analysis reveals changes in pathways related to immune responses, metabolic perturbations, angiogenesis, and hormone regulation. Metabolomics identify disturbances in glucose metabolism, amino acids, lipid profiles, and steroid levels with PCOS FF. Collectively, these pathological alterations may adversely affect oocyte quality, embryo development, and fertility outcomes. Further research on larger cohorts is needed to validate these findings and to forge the development of prognostic biomarkers of oocyte developmental competence within FF. Characterizing the follicular environment in PCOS is key to elucidating the mechanisms underlying subfertility in this challenging disorder.
Collapse
Affiliation(s)
- Mengyang Dai
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| |
Collapse
|
14
|
Bresnahan DR, Catandi GD, Peters SO, Maclellan LJ, Broeckling CD, Carnevale EM. Maturation and culture affect the metabolomic profile of oocytes and follicular cells in young and old mares. Front Cell Dev Biol 2024; 11:1280998. [PMID: 38283993 PMCID: PMC10811030 DOI: 10.3389/fcell.2023.1280998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Oocytes and follicular somatic cells within the ovarian follicle are altered during maturation and after exposure to culture in vitro. In the present study, we used a nontargeted metabolomics approach to assess changes in oocytes, cumulus cells, and granulosa cells from dominant, follicular-phase follicles in young and old mares. Methods: Samples were collected at three stages associated with oocyte maturation: (1) GV, germinal vesicle stage, prior to the induction of follicle/oocyte maturation in vivo; (2) MI, metaphase I, maturing, collected 24 h after induction of maturation in vivo; and (3) MIIC, metaphase II, mature with collection 24 h after induction of maturation in vivo plus 18 h of culture in vitro. Samples were analyzed using gas and liquid chromatography coupled to mass spectrometry only when all three stages of a specific cell type were obtained from the same mare. Results and Discussion: Significant differences in metabolite abundance were most often associated with MIIC, with some of the differences appearing to be linked to the final stage of maturation and others to exposure to culture medium. While differences occurred for many metabolite groups, some of the most notable were detected for energy and lipid metabolism and amino acid abundance. The study demonstrated that metabolomics has potential to aid in optimizing culture methods and evaluating cell culture additives to support differences in COCs associated with maternal factors.
Collapse
Affiliation(s)
- D. R. Bresnahan
- Department of Animal Sciences, Berry College, Mount Berry, GA, United States
| | - G. D. Catandi
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - S. O. Peters
- Department of Animal Sciences, Berry College, Mount Berry, GA, United States
| | - L. J. Maclellan
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - C. D. Broeckling
- Proteomic and Metabolomics Core Facility, Colorado State University, Fort Collins, CO, United States
| | - E. M. Carnevale
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Hedia M, Leroy JLMR, Govaere J, Van Soom A, Smits K. Lipid metabolites, interleukin-6 and oxidative stress markers in follicular fluid and their association with serum concentrations in mares. Vet Res Commun 2023; 47:2221-2228. [PMID: 37055645 DOI: 10.1007/s11259-023-10122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
The application of trans-vaginal ovum pick up (OPU) and intracytoplasmic sperm injection (ICSI) is well established for commercial in vitro embryo production in horses. These assisted reproductive techniques are especially applied during the non-breeding season of the mare. However, little is known about how the health of the oocyte donor may affect the biochemical composition of the follicular fluid (FF) in small and medium-sized follicles routinely aspirated during OPU. This study aimed to investigate associations between systemic and FF concentrations of interleukin-6 (IL-6), total cholesterol, triglycerides, non-esterified fatty acids (NEFA), reactive oxygen metabolites (d-ROMs), biological antioxidant potential (BAP), and oxidative stress index (OSI) during the non-breeding season in mares. At the slaughterhouse, serum and FF of small (5-10 mm in diameter), medium (> 10-20 mm in diameter), and large (> 20-30 mm in diameter) follicles were sampled from 12 healthy mares. There was a strong positive association (P < 0.01) between the concentration of IL-6 in serum and those measured in small (r = 0.846), medium (r = 0.999), and large (r = 0.996) follicles. Serum concentrations of NEFA were positively correlated (P < 0.05) with those measured in small (r = 0.726), medium (r = 0.720), and large (r = 0.974) follicles. Values of total cholesterol and OSI in serum and medium follicles were significantly associated (r = 0.736 and r = 0.696, respectively). The serum concentrations of all lipid metabolites were markedly higher than those measured in FF of small- and medium-sized follicles. Values of IL-6 and OSI did not change significantly between serum and all follicle classes (P ≥ 0.05). To conclude, changes in the blood composition associated with inflammation, oxidative stress, and disturbed lipid metabolism of mares may lead to an inadequate oocyte microenvironment, which could affect oocyte quality and the success rate of OPU/ICSI programs. Further research should indicate whether these changes may ultimately affect in vitro oocyte developmental capacity and subsequent embryo quality.
Collapse
Affiliation(s)
- Mohamed Hedia
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Jan Govaere
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
16
|
de Mello F, Alonso DJ, de Faria NPVM, Marques VH, de Oliveira EF, de Mello PH, de Godoy LC, Moreira RG. Alterations in Gene Expression and the Fatty Acid Profile Impact but Do Not Compromise the In Vitro Maturation of Zebrafish ( Danio rerio) Stage III Ovarian Follicles after Cryopreservation. Animals (Basel) 2023; 13:3563. [PMID: 38003179 PMCID: PMC10668701 DOI: 10.3390/ani13223563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The vitrification of ovarian follicles is a strategic tool that may contribute to advances in aquaculture and the conservation of many important species. Despite the difficulties inherent to the cryopreservation of oocytes, some successful protocols have been developed for different species, but little is known about the capacity of oocytes to develop after thawing. Therefore, the profiles of the reproductive pathway genes and fatty acid membrane composition during the initial stages of development were analyzed in fresh ovarian follicles and follicles after the vitrification process. There were differences in the expression of the hypothalamic-pituitary-gonad axis genes during the follicular development in the control group as well as in the vitrified group. Similarly, alterations in the composition of fatty acids were observed after vitrification. Despite this, many alterations were observed in the vitrified group; more than half of the stage III ovarian follicles were able to grow and mature in vitro. Therefore, the vitrification of ovarian follicles may impact them at molecular and membrane levels, but it does not compromise their capability for in vitro maturation, which indicates that the technique can be a strategic tool for aquaculture.
Collapse
Affiliation(s)
- Fernanda de Mello
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Daniel Jaen Alonso
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Natália Pires Vieira Morais de Faria
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Victor Hugo Marques
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Ethiene Fernandes de Oliveira
- Aquaculture Center, São Paulo State University “Julio de Mesquita Filho” (CAUNESP), Access Road Professor Paulo Donato Castellane, Vila Industrial District, Jaboticabal 14884-900, SP, Brazil;
| | - Paulo Henrique de Mello
- Beacon Development, King Abdullah University of Science and Technology, 2713, Jeddah 23955, Saudi Arabia;
| | - Leandro César de Godoy
- Department of Animal Science, Federal University of Rio Grande do Sul, 7712 Bento Gonçalves Avenue, Agronomia District, Porto Alegre 91540-000, RS, Brazil;
| | - Renata Guimaraes Moreira
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| |
Collapse
|
17
|
Zhang CH, Liu XY, Wang J. Essential Role of Granulosa Cell Glucose and Lipid Metabolism on Oocytes and the Potential Metabolic Imbalance in Polycystic Ovary Syndrome. Int J Mol Sci 2023; 24:16247. [PMID: 38003436 PMCID: PMC10671516 DOI: 10.3390/ijms242216247] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Granulosa cells are crucial for the establishment and maintenance of bidirectional communication among oocytes. Various intercellular material exchange modes, including paracrine and gap junction, are used between them to achieve the efficient delivery of granulosa cell structural components, energy substrates, and signaling molecules to oocytes. Glucose metabolism and lipid metabolism are two basic energy metabolism pathways in granulosa cells; these are involved in the normal development of oocytes. Pyruvate, produced by granulosa cell glycolysis, is an important energy substrate for oocyte development. Granulosa cells regulate changes in intrafollicular hormone levels through the processing of steroid hormones to control the development process of oocytes. This article reviews the material exchange between oocytes and granulosa cells and expounds the significance of granulosa cells in the development of oocytes through both glucose metabolism and lipid metabolism. In addition, we discuss the effects of glucose and lipid metabolism on oocytes under pathological conditions and explore its relationship to polycystic ovary syndrome (PCOS). A series of changes were found in the endogenous molecules and ncRNAs that are related to glucose and lipid metabolism in granulosa cells under PCOS conditions. These findings provide a new therapeutic target for patients with PCOS; additionally, there is potential for improving the fertility of patients with PCOS and the clinical outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Xiang-Yi Liu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Jing Wang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
18
|
Tutt DAR, Guven-Ates G, Kwong WY, Simmons R, Sang F, Silvestri G, Canedo-Ribeiro C, Handyside AH, Labrecque R, Sirard MA, Emes RD, Griffin DK, Sinclair KD. Developmental, cytogenetic and epigenetic consequences of removing complex proteins and adding melatonin during in vitro maturation of bovine oocytes. Front Endocrinol (Lausanne) 2023; 14:1280847. [PMID: 38027209 PMCID: PMC10647927 DOI: 10.3389/fendo.2023.1280847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background In vitro maturation (IVM) of germinal vesicle intact oocytes prior to in vitro fertilization (IVF) is practiced widely in animals. In human assisted reproduction it is generally reserved for fertility preservation or where ovarian stimulation is contraindicated. Standard practice incorporates complex proteins (CP), in the form of serum and/or albumin, into IVM media to mimic the ovarian follicle environment. However, the undefined nature of CP, together with batch variation and ethical concerns regarding their origin, necessitate the development of more defined formulations. A known component of follicular fluid, melatonin, has multifaceted roles including that of a metabolic regulator and antioxidant. In certain circumstances it can enhance oocyte maturation. At this stage in development, the germinal-vesicle intact oocyte is prone to aneuploidy and epigenetic dysregulation. Objectives To determine the developmental, cytogenetic and epigenetic consequences of removing CP and including melatonin during bovine IVM. Materials and methods The study comprised a 2 x 2 factorial arrangement comparing (i) the inclusion or exclusion of CP, and (ii) the addition (100 nM) or omission of melatonin, during IVM. Cumulus-oocyte complexes (COCs) were retrieved from stimulated cycles. Following IVM and IVF, putative zygotes were cultured to Day 8 in standard media. RNAseq was performed on isolated cumulus cells, cytogenetic analyses (SNP-based algorithms) on isolated trophectoderm cells, and DNA methylation analysis (reduced representation bisulfite sequencing) on isolated cells of the inner-cell mass. Results Removal of CP during IVM led to modest reductions in blastocyst development, whilst added melatonin was beneficial in the presence but detrimental in the absence of CP. The composition of IVM media did not affect the nature or incidence of chromosomal abnormalities but cumulus-cell transcript expression indicated altered metabolism (primarily lipid) in COCs. These effects preceded the establishment of distinct metabolic and epigenetic signatures several days later in expanded and hatching blastocysts. Conclusions These findings highlight the importance of lipid, particularly sterol, metabolism by the COC during IVM. They lay the foundation for future studies that seek to develop chemically defined systems of IVM for the generation of transferrable embryos that are both cytogenetically and epigenetically normal.
Collapse
Affiliation(s)
- Desmond A. R. Tutt
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Gizem Guven-Ates
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Wing Yee Kwong
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Rob Simmons
- Paragon Veterinary Group, Carlisle, United Kingdom
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Alan H. Handyside
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Marc-André Sirard
- CRDSI, Département des Sciences Animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, QC, Canada
| | - Richard D. Emes
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Kevin D. Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
19
|
Du C, Nan L, Li C, Chu C, Wang H, Fan Y, Ma Y, Zhang S. Differences in Milk Proteomic Profiles between Estrous and Non-Estrous Dairy Cows. Animals (Basel) 2023; 13:2892. [PMID: 37760292 PMCID: PMC10525490 DOI: 10.3390/ani13182892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Efficient reproductive management of dairy cows depends primarily upon accurate estrus identification. However, the currently available estrus detection methods, such as visual observation, are poor. Hence, there is an urgent need to discover novel biomarkers in non-invasive bodily fluids such as milk to reliably detect estrus status. Proteomics is an emerging and promising tool to identify biomarkers. In this study, the proteomics approach was performed on milk sampled from estrus and non-estrus dairy cows to identify potential biomarkers of estrus. Dairy cows were synchronized and timed for artificial insemination, and the cows with insemination leading to conception were considered to be in estrus at the day of insemination (day 0). Milk samples of day 0 (estrus group) and day -3 (non-estrus group) from dairy cows confirming to be pregnant were collected for proteomic analysis using the tandem mass tags (TMT) proteomics approach. A total of 89 differentially expressed proteins were identified, of which 33 were upregulated and 56 were downregulated in the estrus milk compared with the non-estrus milk. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that acetyl coenzyme A carboxylase α (ACACA), apolipoprotein B (APOB), NAD(P)H steroid dehydrogenase-like (NSDHL), perilipin 2 (PLIN2), and paraoxonase 1 (PON1) participated in lipid binding, lipid storage, lipid localization, and lipid metabolic process, as well as fatty acid binding, fatty acid biosynthesis, and fatty acid metabolism, and these processes are well documented to be related to estrus regulation. These milk proteins are proposed as possible biomarkers of estrus in dairy cows. Further validation studies are required in a large population to determine their potential as estrus biomarkers.
Collapse
Affiliation(s)
- Chao Du
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China;
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| | - Liangkang Nan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| | - Chunfang Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
- Hebei Livestock Breeding Station, Shijiazhuang 050000, China
| | - Chu Chu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| | - Haitong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| | - Yikai Fan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| | - Yabin Ma
- Hebei Livestock Breeding Station, Shijiazhuang 050000, China
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| |
Collapse
|
20
|
Placidi M, Vergara T, Casoli G, Flati I, Capece D, Artini PG, Virmani A, Zanatta S, D’Alessandro AM, Tatone C, Di Emidio G. Acyl-Carnitines Exert Positive Effects on Mitochondrial Activity under Oxidative Stress in Mouse Oocytes: A Potential Mechanism Underlying Carnitine Efficacy on PCOS. Biomedicines 2023; 11:2474. [PMID: 37760915 PMCID: PMC10525604 DOI: 10.3390/biomedicines11092474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Carnitines play a key physiological role in oocyte metabolism and redox homeostasis. In clinical and animal studies, carnitine administration alleviated metabolic and reproductive dysfunction associated with polycystic ovarian syndrome (PCOS). Oxidative stress (OS) at systemic, intraovarian, and intrafollicular levels is one of the main factors involved in the pathogenesis of PCOS. We investigated the ability of different acyl-carnitines to act at the oocyte level by counteracting the effects of OS on carnitine shuttle system and mitochondrial activity in mouse oocytes. Germinal vesicle (GV) oocytes were exposed to hydrogen peroxide and propionyl-l-carnitine (PLC) alone or in association with l-carnitine (LC) and acetyl-l-carnitine (ALC) under different conditions. Expression of carnitine palmitoyltransferase-1 (Cpt1) was monitored by RT-PCR. In in vitro matured oocytes, metaphase II (MII) apparatus was assessed by immunofluorescence. Oocyte mitochondrial respiration was evaluated by Seahorse Cell Mito Stress Test. We found that Cpt1a and Cpt1c isoforms increased under prooxidant conditions. PLC alone significantly improved meiosis completion and oocyte quality with a synergistic effect when combined with LC + ALC. Acyl-carnitines prevented Cpt1c increased expression, modifications of oocyte respiration, and ATP production observed upon OS. Specific effects of PLC on spare respiratory capacity were observed. Therefore, carnitine supplementation modulated the intramitochondrial transfer of fatty acids with positive effects on mitochondrial activity under OS. This knowledge contributes to defining molecular mechanism underlying carnitine efficacy on PCOS.
Collapse
Affiliation(s)
- Martina Placidi
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Teresa Vergara
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Giovanni Casoli
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (D.C.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (D.C.)
| | - Paolo Giovanni Artini
- Department of Obstetrics and Gynecology “P. Fioretti”, University of Pisa, 56126 Pisa, Italy;
| | - Ashraf Virmani
- Research, Innovation and Development, Alfasigma B.V., 3528 BG Utrecht, The Netherlands;
| | - Samuele Zanatta
- Research and Development, Labomar Spa, 31036 Istrana, Italy;
| | - Anna Maria D’Alessandro
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Carla Tatone
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Giovanna Di Emidio
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| |
Collapse
|
21
|
Zhu X, Hong X, Wu J, Zhao F, Wang W, Huang L, Li J, Wang B. The Association between Circulating Lipids and Female Infertility Risk: A Univariable and Multivariable Mendelian Randomization Analysis. Nutrients 2023; 15:3130. [PMID: 37513548 PMCID: PMC10384410 DOI: 10.3390/nu15143130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Although observational studies have demonstrated that blood lipids are associated with female infertility, the causality of this association remains unclear. We performed a univariable and multivariable Mendelian randomization (MR) analysis to evaluate the causal relationship between blood lipids and female infertility. METHODS Single-nucleotide polymorphisms associated with lipid traits in univariate analysis were obtained from the Million Veteran Program (MVP) and Global Lipids Genetics Consortium (GLGC), involving up to 215,551 and 188,577 European individuals, respectively. Blood lipids in multivariate analysis were obtained from the latest genome-wide association study meta-analysis with lipid levels in 73 studies encompassing >300,000 participants. Data on female infertility were obtained from the FinnGen Consortium R6 release, which included 6481 samples and 75,450 controls. Subsequently, MR analysis was performed using inverse variance-weighted (IVW), weighted median, weighted-mode, simple-mode and MR-Egger regression to demonstrate the causal relationship between lipids and female infertility. RESULTS After controlling confounding factors including body mass index and age at menarche, two-sample MR demonstrated that genetically predicted LDL-C and TC were causally associated with the risk of female infertility (When the genetic instruments come from the MVP database, LDL-C and female infertility, IVW OR: 1.13, 95% CI: 1.001-1.269, p = 0.047; TC and female infertility, IVW OR: 1.16, 95% CI: 1.018-1.317, p = 0.025, and when the genetic instruments came from the GLGC database, LDL-C and female infertility, IVW OR: 1.10, 95% CI: 1.008-1.210, p = 0.033; TC and female infertility, IVW OR: 1.14, 95% CI: 1.024-1.258, p = 0.015). However, the IVW estimate showed that HDL-C was not significantly associated with the risk of female infertility (when the genetic instruments came from the MVP database, IVW OR: 1.00, 95% CI: 0.887-1.128, p = 0.999; when the genetic instruments came from the GLGC database, IVW OR: 1.00, 95% CI: 0.896-1.111, p = 0.968). The multivariable MR analysis also provided evidence that LDL-C (OR: 1.12, 95% CI: 1.006-1.243, p = 0.042) was significantly associated with the risk of female infertility after considering the correlation of all lipid-related traits. CONCLUSION These findings support a causal relationship between increased LDL-cholesterol and increased female infertility risk. Furthermore, the association between lipid-related traits and female infertility risk merits more studies.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jingying Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Fanqi Zhao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lingling Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiuming Li
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
22
|
Ran M, Hu S, Ouyang Q, Xie H, Zhang X, Lin Y, Li X, Hu J, Li L, He H, Liu H, Wang J. miR-202-5p Inhibits Lipid Metabolism and Steroidogenesis of Goose Hierarchical Granulosa Cells by Targeting ACSL3. Animals (Basel) 2023; 13:ani13030325. [PMID: 36766213 PMCID: PMC9913746 DOI: 10.3390/ani13030325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
miRNAs are critical for steroidogenesis in granulosa cells (GCs) during ovarian follicular development. We have previously shown that miR-202-5p displays a stage-dependent expression pattern in GCs from goose follicles of different sizes, suggesting that this miRNA could be involved in the regulation of the functions of goose GCs; therefore, in this study, the effects of miR-202-5p on lipid metabolism and steroidogenesis in goose hierarchical follicular GCs (hGCs), as well as its mechanisms of action, were evaluated. Oil Red O staining and analyses of intracellular cholesterol and triglyceride contents showed that the overexpression of miR-202-5p significantly inhibited lipid deposition in hGCs; additionally, miR-202-5p significantly inhibited progesterone secretion in hGCs. A bioinformatics analysis and luciferase reporter assay indicated that Acyl-CoA synthetase long-chain family member 3 (ACSL3), which activates long-chain fatty acids for the synthesis of cellular lipids, is a potential target of miR-202-5p. ACSL3 silencing inhibited lipid deposition and estrogen secretion in hGCs. These data suggest that miR-202-5p exerts inhibitory effects on lipid deposition and steroidogenesis in goose hGCs by targeting the ACSL3 gene.
Collapse
|
23
|
Chian R, Li J, Lim J, Yoshida H. IVM of human immature oocytes for infertility treatment and fertility preservation. Reprod Med Biol 2023; 22:e12524. [PMID: 37441160 PMCID: PMC10335168 DOI: 10.1002/rmb2.12524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Background Thousands of healthy babies are born from in vitro maturation (IVM) procedures, but the rate of efficiency differs with the source of immature oocytes obtained. Recently, there are different IVM protocols proposed for infertility treatment and fertility preservation. Methods Based on the literature, the clinical application for IVM of immature oocytes was summarized. Main findings Results Immature oocytes may be retrieved from women after priming with or without the use of follicular stimulation hormone (FSH), human chorionic gonadotrophin (hCG) or a combination of both FSH and hCG. Successful pregnancy rates with IVM technology seem to be correlated with the number of immature oocytes obtained. With the source and culture course of immature oocytes, there are various IVM protocols. IVM of immature oocytes is profoundly affected by the culture conditions, but no breakthrough has been made by improving the IVM medium itself. Thus, the clinical application of IVM technology continues to evolve. Conclusion IVM technology is a useful technique for infertile women and fertility preservation. Mild stimulation IVF combined with IVM of immature oocytes is a viable alternative to the conventional stimulation IVF cycle treatment as it may prove to be an optimal first-line treatment approach.
Collapse
Affiliation(s)
- Ri‐Cheng Chian
- Center for Reproductive MedicineShanghai 10th People's Hospital of Tongji UniversityShanghaiChina
| | - Jian‐Hua Li
- Reproductive Medical Center, Senior Department of Obstetrics and GynecologyThe Seventh Medical Center of PLA General HospitalBeijingChina
| | | | | |
Collapse
|
24
|
Berger N, Allerkamp H, Wadsack C. Serine Hydrolases in Lipid Homeostasis of the Placenta-Targets for Placental Function? Int J Mol Sci 2022; 23:6851. [PMID: 35743292 PMCID: PMC9223866 DOI: 10.3390/ijms23126851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
The metabolic state of pregnant women and their unborn children changes throughout pregnancy and adapts to the specific needs of each gestational week. These adaptions are accomplished by the actions of enzymes, which regulate the occurrence of their endogenous substrates and products in all three compartments: mother, placenta and the unborn. These enzymes determine bioactive lipid signaling, supply, and storage through the generation or degradation of lipids and fatty acids, respectively. This review focuses on the role of lipid-metabolizing serine hydrolases during normal pregnancy and in pregnancy-associated pathologies, such as preeclampsia, gestational diabetes mellitus, or preterm birth. The biochemical properties of each class of lipid hydrolases are presented, with special emphasis on their role in placental function or dysfunction. While, during a normal pregnancy, an appropriate tonus of bioactive lipids prevails, dysregulation and aberrant signaling occur in diseased states. A better understanding of the dynamics of serine hydrolases across gestation and their involvement in placental lipid homeostasis under physiological and pathophysiological conditions will help to identify new targets for placental function in the future.
Collapse
Affiliation(s)
- Natascha Berger
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
| | - Hanna Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
- BioTechMed-Graz, 8036 Graz, Austria
| |
Collapse
|