1
|
Sun B, Long Y, Xu G, Chen J, Wu G, Liu B, Gao Y. Acute hypoxia modulate macrophage phenotype accompanied with transcriptome re-programming and metabolic re-modeling. Front Immunol 2025; 16:1534009. [PMID: 40034701 PMCID: PMC11872928 DOI: 10.3389/fimmu.2025.1534009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Macrophages, which tend to aggregate in the hypoxic regions of tissues, have a significant impact on disease progression and outcome because of their plastic responsiveness to hypoxia, particularly in the early stages. Understanding macrophages'participation in hypoxia-related disorders requires demonstrating the impact of acute hypoxia on their survival, phenotype, and function. Methods Here we conducted a systematic evaluation of macrophage responses to hypoxia over 24 and 48 h including cell growth and activity, inflamatory response, macrophage polarization and transcriptional and metabolic changes. Results We found that acute hypoxia suppresses macrophage proliferation and phagocytosis function with a parallel change of transcriptome re-programming and metabolic re-modeling. Although macrophages accumulate transcriptome heterogeneity based on oxygen concentration and culture period, genes involved in hypoxia response, chemotaxis, and glycolytic process were commonly altered during acute hypoxia. Furthermore, the pro-inflammatory response of macrophages was activated during acute hypoxia concomitantly with an enhanced anti-inflammatory regulatory mechanism characterized by increased M2 macrophage population and anti-inflammatory metabolite itaconic acid. Aside from increased glycolysis, the key intermediates in the pentose phosphate pathway significantly increased, such as fructose 1,6-bisphosphate (fold change: 7.8), 6-phosphogluconate (fold change: 6.1), and ribose 5-phosphate (fold change: 3.9), which indicated that the pentose phosphate pathway was an important compensatory metabolic regulation that rules for the response of macrophages to acute hypoxia. Discussion These findings highlight that acute hypoxia suppresses macrophage viability and phagocytosis, while acute hypoxia modifies the transcriptome and metabolome in specific inflammatory responses and metabolic pathways to facilitate the adaptation of macrophage in hypoxic conditions.
Collapse
Affiliation(s)
- Binda Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, Chinese People’s Liberation Army (PLA), Chongqing, China
| | - Yao Long
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, Chinese People’s Liberation Army (PLA), Chongqing, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, Chinese People’s Liberation Army (PLA), Chongqing, China
| | - Jian Chen
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, Chinese People’s Liberation Army (PLA), Chongqing, China
| | - Gang Wu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, Chinese People’s Liberation Army (PLA), Chongqing, China
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, Chinese People’s Liberation Army (PLA), Chongqing, China
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, Chinese People’s Liberation Army (PLA), Chongqing, China
| |
Collapse
|
2
|
Liu R, Zhang P, Bai J, Zhong Z, Shan Y, Cheng Z, Zhang Q, Guo Q, Zhang H, Zhang B. Integrated Transcriptomic and Proteomic Analyses of Antler Growth and Ossification Mechanisms. Int J Mol Sci 2024; 25:13215. [PMID: 39684926 DOI: 10.3390/ijms252313215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Antlers are the sole mammalian organs capable of continuous regeneration. This distinctive feature has evolved into various biomedical models. Research on mechanisms of antler growth, development, and ossification provides valuable insights for limb regeneration, cartilage-related diseases, and cancer mechanisms. Here, ribonucleic acid sequencing (RNA-seq) and four-dimensional data-independent acquisition (4D DIA) technologies were employed to examine gene and protein expression differences among four tissue layers of the Chinese milu deer antler: reserve mesenchyme (RM), precartilage (PC), transition zone (TZ), cartilage (CA). Overall, 4611 differentially expressed genes (DEGs) and 2388 differentially expressed proteins (DEPs) were identified in the transcriptome and proteome, respectively. Among the 828 DEGs common to both omics approaches, genes from the collagen, integrin, and solute carrier families, and signaling molecules were emphasized for their roles in the regulation of antler growth, development, and ossification. Bioinformatics analysis revealed that in addition to being regulated by vascular and nerve regeneration pathways, antler growth and development are significantly influenced by numerous cancer-related signaling pathways. This indicates that antler growth mechanisms may be similar to those of cancer cell proliferation and development. This study lays a foundation for future research on the mechanisms underlying the rapid growth and ossification of antlers.
Collapse
Affiliation(s)
- Ruijia Liu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Pan Zhang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Jiade Bai
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Zhenyu Zhong
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Yunfang Shan
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Zhibin Cheng
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Qingxun Zhang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Qingyun Guo
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Lin F, Yang H, Huang Z, Li Y, Ding Q, Ye Y, Qiu S. Magnesium-related gene ITGAL: a key immunotherapy predictor and prognostic biomarker in pan-cancer. Front Pharmacol 2024; 15:1464830. [PMID: 39605903 PMCID: PMC11598444 DOI: 10.3389/fphar.2024.1464830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background Integrin subunit alpha L (ITGAL) is crucial for activating CD8+ T cells through magnesium-mediated immune synapse formation and specific cytotoxicity. ITGAL might exert an important function in the growth and transformation of cancer. Methods Our study comprehensively analyzed ITGAL expression across various cancers, validated by Immunochemistry (IHC) in the laboratory. ITGAL showed prognostic significance in pan-cancer patients, correlated with clinical features, and associated with specific signaling pathways. We also observed a relationship between ITGAL and immune cell infiltration. In HNSCC, ITGAL demonstrated prognostic value and potential implications for immunotherapy response and novel drug targets. Results ITGAL expression linked to tumor prognosis across 27 cancers. Elevated ITGAL correlated with good prognosis in CESC, LUAD, SARC, HNSCC, and SKCM. ITGAL involved in immune regulation pathways and showed positive correlation with immune cell infiltration. ITGAL associated with CD8+ T cell infiltration. And high ITGAL expression in CD8+ T cells and NK cells. In HNSCC, ITGAL linked to favorable prognosis and sensitivity to immunotherapy. Predicted potential drugs for HNSCC. Conclusion ITGAL is remarkably associated with CD8+T cells and crucial in the tumor immune microenvironment of pan-cancer. Furthermore, our findings may provide a targeted anti-tumor strategy for ITGAL by influencing the tumor immune microenvironment.
Collapse
Affiliation(s)
- Fengjie Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| | - Hanxuan Yang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| | - Zongwei Huang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| | - Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer, Hospital, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| |
Collapse
|
4
|
Kang G, Song H, Bo L, Liu Q, Li Q, Li J, Pan P, Wang J, Jia Y, Sun H, Ma X. Nicotine promotes M2 macrophage polarization through α5-nAChR/SOX2/CSF-1 axis in lung adenocarcinoma. Cancer Immunol Immunother 2024; 74:11. [PMID: 39487876 PMCID: PMC11531455 DOI: 10.1007/s00262-024-03866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
α5-nicotinic acetylcholine receptor (α5-nAChR) plays a vital part in lung adenocarcinoma (LUAD). However, it is not comprehensively understood that how the α5-nAChR affects LUAD. Through diverse bioinformatics analyses and immunohistochemistry, the expressions of α5-nAChR and SOX2 as well as their relations were dissected. α5-nAChR regulated the differentiation of monocytes into M2 macrophages by targeting the STAT3/SOX2/CSF-1 signaling in the coculture system by western blotting and ChIP. α5-nAChR-mediated macrophage-mediated LUAD cell migration via SOX2/CSF-1 signaling in the cocultured medium. Correlations of α5-nAChR, SOX2 and M2 phenotype tumor-associated macrophages (TAMs) were validated in mouse LUAD models and clinical samples. α5-nAChR expression was connected to SOX2 expression, smoking and bad prognosis of LUAD among clinical samples. Nicotine-induced SOX2 expression was mediated by α5-nAChR via STAT3. Additionally, SOX2-mediated macrophage colony-stimulating factor (CSF-1) expression contributed to LUAD progression in vitro. Furthermore, α5-nAChR expression was strongly linked to pSTAT3, SOX2 and M2 macrophage marker CD206 expression and negatively correlated with M1 macrophage marker CD86 expression in vivo. It is indicated that M2 macrophages are mediated by the new α5-nAChR /SOX2/CSF-1 axis in nicotine-related LUAD, which is a potential therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Guiyu Kang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
- Department of Medical Laboratory, Weifang Medical University, Weifang, China
- Department of Clinical Laboratory, The 960 Hospital of PLA, Jinan, China
| | - Hui Song
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Bo
- Department of Clinical Laboratory, The 960 Hospital of PLA, Jinan, China
| | - Qi Liu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Qiang Li
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Jingtan Li
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Pan Pan
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Jingting Wang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China
| | - Haiji Sun
- College of Life Science, Shandong Normal University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jiefang Road 105, Jinan, China.
- Department of Medical Laboratory, Weifang Medical University, Weifang, China.
| |
Collapse
|
5
|
Zhou Y, Liu D, Li H. FGL1 Promotes Tumor Immune Escape in Stomach Adenocarcinoma via the Notch Signaling Pathway. Mol Biotechnol 2024; 66:3203-3212. [PMID: 37902887 DOI: 10.1007/s12033-023-00928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Immune escape is the major reason for immunotherapy failure in stomach adenocarcinoma (STAD). We tried to reveal the underlying mechanism of FGL1 influencing STAD in this study. Bioinformatics analyses were conducted to analyze the expression of FGL1, the signaling pathways affected by FGL1, and the relation between FGL1 and immune cell infiltration. Quantitative real-time PCR (qRT-PCR), cell counting kit-8 assay, colony formation assay, flow cytometry and Transwell assay were adopted to analyze FGL1 expression, cell viability, cell proliferation, cell apoptosis, and cell invasion, respectively. Enzyme-linked immunosorbent assay, lactate dehydrogenase method, qRT-PCR and Western blot were adopted to reveal proinflammatory cytokine expression, cytotoxicity and mRNA and protein expression of the Notch signaling-related genes, respectively, after co-culture of STAD cells and CD8+T cells. Nude mice experiment was conducted to validate the results obtained above. FGL1 expressed highly in STAD and could activate the Notch signaling pathway, and it was negatively correlated with CD8+T cell infiltration. Cell experiments confirmed that high expression of FGL1 facilitated proliferation and hindered apoptosis of STAD cells. Knockdown of FGL1 could facilitate expression of pro-inflammatory factors and the cytotoxicity of CD8+T cells in co-culture system of STAD and CD8+ T cells. Knockdown of FGL1 could suppress the expression of the Notch signaling pathway-related genes, and the addition of Notch inhibitor proved that FGL1 promoted immune escape via the Notch signaling pathway. This study investigated the influence of FGL1 on STAD immune escape and demonstrated that FGL1 inhibited CD8+ T cell activation by activating the Notch signaling pathway and thus promoted tumor immune escape in STAD, providing a new potential diagnostic marker and therapeutic target for the immunotherapy of STAD patients.
Collapse
Affiliation(s)
- Yani Zhou
- School of Health Management, Shangluo University, Shangluo, 726000, China
| | - Dan Liu
- Department of Rheumatology, First Affiliated Hospital of Xi'an Medical College, Xi'an, 710077, China
| | - Huirong Li
- Department of Mathematics and Computer Application, Shangluo University, No. 10, Beixin Street, Shangzhou District, Shangluo, 726000, Shaanxi Province, China.
| |
Collapse
|
6
|
Zhang R, Zhu G, Li Z, Meng Z, Huang H, Ding C, Wang Y, Chen C, Li Y, Liu H, Chen J. ITGAL expression in non-small-cell lung cancer tissue and its association with immune infiltrates. Front Immunol 2024; 15:1382231. [PMID: 38646528 PMCID: PMC11027504 DOI: 10.3389/fimmu.2024.1382231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Background Integrin subunit alpha L (ITGAL) encodes an integrin component of LFA-1 and is a membrane receptor molecule widely expressed on leukocytes. It plays a key role in the interaction between white blood cells and other cells. There was a significant correlation between the expression of ITGAL and the tumor microenvironment in a number of cancers. However, experimental studies targeting ITGAL and immune cell infiltration in non-small-cell lung cancer (NSCLC) and the response to immune checkpoint inhibitor therapy are lacking. Methods Data were obtained from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases to explore the relationship between ITGAL expression and prognosis, as well as the immune cell infiltration in patients with NSCLC. In addition, immunohistochemical staining for ITGAL and multiplex immunofluorescence (mIF) staining for ITGAL, CD20, CD68, CD4, and CD8 from tissue microarrays containing 118 tumor tissues and paired paracancerous tissues from patients with NSCLC were performed. The correlation between ITGAL expression and clinical factors, as well as the immunophenotypes of tumor-infiltrating immune cells, were also analyzed. Results In NSCLC tumor tissues, ITGAL was downregulated compared with matched paracancerous tissues, and low ITGAL expression was associated with a poor prognosis of NSCLC patients. Subsequently, immunohistochemistry results for tissue microarray showed that ITGAL expression was mainly elevated in tumor stroma and areas with highly infiltrated immune cells. ITGAL expression was higher in paracancerous tissues than tumor tissues. Furthermore, mIF results indicated that the patients with ITGAL-high expression tend had significantly higher CD8+ T cells, CD68+ macrophages, CD4+ T cells, and CD20+ B cells infiltration in their tumor tissues. Immunophenotypes were classified into three categories, that is deserted, excluded, and inflamed types, according to each kind of immune cell distribution in or around the cancer cell nest. MIF results showed that ITGAL expression level was correlated with the immunophenotypes. Furthermore, ITGAL expression was associated with the prognosis of NSCLC in patients with immune checkpoint inhibitor therapy and the patients with high ITGAL expression tends have better outcomes. Conclusions ITGAL may be used as a biomarker for assessing the immune microenvironment in patients with NSCLC.
Collapse
Affiliation(s)
- Ruihao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangsheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zaishan Li
- Department of Cardiothoracic Surgery, Linyi People’s Hospital, Linyi, China
| | - Zhenzhen Meng
- Department of Anesthesiology, Linyi People’s Hospital, Linyi, China
| | - Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Ding
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanan Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Xiao Z, Nian Z, Zhang M, Liu Z, Liu Z, Zhang Z. Integrated analysis highlights the significance role of ITGAL in lung adenocarcinoma. J Cell Mol Med 2024; 28:e18289. [PMID: 38613346 PMCID: PMC11015394 DOI: 10.1111/jcmm.18289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Integrin alpha L (ITGAL), a member of the integrin family, is associated with carcinogenesis and immune regulation. However, the biological functions of ITGAL in lung adenocarcinoma (LUAD) remain poorly understood. In this study, we utilized the TCGA dataset to analyse ITGAL mRNA expression in LUAD and examined its correlation with clinical prognosis. Three-dimensional (3D) Matrigel culture, 5-bromodeoxyuridine (BrdU) ELISA, wound-healing migration and cell adherence assays were used to demonstrate the potential role of ITGAL in LUAD progression. Additionally, we analysed single-cell sequencing data of LUAD to determine the expression and biological function of ITGAL. Our research revealed that the expression of ITGAL in LUAD samples is an independent predictor of prognosis. Patients with high expression of ITGAL had significantly better overall survival (OS), progression-free survival (PFS) and disease-specific survival (DSS) compared to the low-expression group. Meanwhile, the expression of ITGAL suppressed malignant progression in LUAD cells. Functional enrichment analyses showed that ITGAL was significantly correlated with cell immune response and immune checkpoint, consistent with the analysis of single-cell sequencing in paired samples of normal and tumour. Furthermore, we confirmed that ITGAL expression affect the tumour microenvironment (TME) through regulation of the expression of cytokines in NK cells of LUAD. In summary, ITGAL is a prognostic biomarker for LUAD patients, and it repressed malignant progression in LUAD cells. Moreover, ITGAL expression also enhanced the effect of immunotherapy and may be an important target in LUAD therapy.
Collapse
Affiliation(s)
- Zengtuan Xiao
- Department of Immunology, School of Basic Medical Sciences, Department of Lung Cancer Surgery, Tianjin Lung Cancer CenterTianjin Medical UniversityTianjinChina
| | - Zhe Nian
- Department of Immunology, School of Basic Medical Sciences, Department of Lung Cancer Surgery, Tianjin Lung Cancer CenterTianjin Medical UniversityTianjinChina
| | - Mengzhe Zhang
- Department of Immunology, School of Basic Medical Sciences, Department of Lung Cancer Surgery, Tianjin Lung Cancer CenterTianjin Medical UniversityTianjinChina
| | - Zuo Liu
- Department of Immunology, School of Basic Medical Sciences, Department of Lung Cancer Surgery, Tianjin Lung Cancer CenterTianjin Medical UniversityTianjinChina
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Department of Lung Cancer Surgery, Tianjin Lung Cancer CenterTianjin Medical UniversityTianjinChina
| | - Zhenfa Zhang
- Department of Immunology, School of Basic Medical Sciences, Department of Lung Cancer Surgery, Tianjin Lung Cancer CenterTianjin Medical UniversityTianjinChina
| |
Collapse
|
8
|
Yeyeodu S, Hanafi D, Webb K, Laurie NA, Kimbro KS. Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease. Front Endocrinol (Lausanne) 2024; 14:1286979. [PMID: 38577257 PMCID: PMC10991756 DOI: 10.3389/fendo.2023.1286979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 04/06/2024] Open
Abstract
Both cancer and cardio-metabolic disease disparities exist among specific populations in the US. For example, African Americans experience the highest rates of breast and prostate cancer mortality and the highest incidence of obesity. Native and Hispanic Americans experience the highest rates of liver cancer mortality. At the same time, Pacific Islanders have the highest death rate attributed to type 2 diabetes (T2D), and Asian Americans experience the highest incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by infectious agents. Notably, the pathologic progression of both cancer and cardio-metabolic diseases involves innate immunity and mechanisms of inflammation. Innate immunity in individuals is established through genetic inheritance and external stimuli to respond to environmental threats and stresses such as pathogen exposure. Further, individual genomes contain characteristic genetic markers associated with one or more geographic ancestries (ethnic groups), including protective innate immune genetic programming optimized for survival in their corresponding ancestral environment(s). This perspective explores evidence related to our working hypothesis that genetic variations in innate immune genes, particularly those that are commonly found but unevenly distributed between populations, are associated with disparities between populations in both cancer and cardio-metabolic diseases. Identifying conventional and unconventional innate immune genes that fit this profile may provide critical insights into the underlying mechanisms that connect these two families of complex diseases and offer novel targets for precision-based treatment of cancer and/or cardio-metabolic disease.
Collapse
Affiliation(s)
- Susan Yeyeodu
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
- Charles River Discovery Services, Morrisville, NC, United States
| | - Donia Hanafi
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - Kenisha Webb
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Nikia A. Laurie
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
Xu Y, Wang X, Yuan W, Zhang L, Chen W, Hu K. Identification of BANF1 as a novel prognostic biomarker in gastric cancer and validation via in-vitro and in-vivo experiments. Aging (Albany NY) 2024; 16:1808-1828. [PMID: 38261746 PMCID: PMC10866416 DOI: 10.18632/aging.205461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Gastric cancer (GC) is a widespread malignancy characterized by a notably high incidence rate and an unfavorable prognosis. We conducted a meticulous analysis of GC high-throughput sequencing data downloaded from the Gene Expression Omnibus (GEO) repository to pinpoint distinctive genes associated with GC. Our investigation successfully identified three signature genes implicated in GC, with a specific focus on the barrier to autointegration factor 1 (BANF1), which exhibits elevated expression across various cancer types, including GC. Bioinformatic analysis has highlighted BANF1 as a prognostic indicator for patients with GC, with direct implications for immune cell infiltration. To gain a more comprehensive understanding of the significance of BANF1 in GC, we performed a series of in vitro experiments to confirm its high expression in GC tissues and cellular components. Intriguingly, the induction of BANF1 knockdown resulted in a marked attenuation of proliferation, migratory capacity, and invasive potential in GC cells. Moreover, our in vivo experiments using nude mouse models revealed a notable impediment in tumor growth following BANF1 knockdown. These insights underscore the feasibility of BANF1 as a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xu Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Weiwei Yuan
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei 230022, China
| | - Ling Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Wei Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Fuyang 236000, China
| |
Collapse
|
10
|
Li J, Chen Z, Li Q, Liu R, Zheng J, Gu Q, Xiang F, Li X, Zhang M, Kang X, Wu R. Study of miRNA and lymphocyte subsets as potential biomarkers for the diagnosis and prognosis of gastric cancer. PeerJ 2024; 12:e16660. [PMID: 38259671 PMCID: PMC10802158 DOI: 10.7717/peerj.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/24/2024] Open
Abstract
Objective The aim of this study was to identify the expression of miRNA and lymphocyte subsets in the blood of gastric cancer (GC) patients, elucidate their clinical significance in GC, and establish novel biomarkers for the early diagnosis and prognosis of GC. Methods The expression of miRNAs in the serum of GC patients was screened using second-generation sequencing and detected using qRT-PCR. The correlation between miRNA expression and clinicopathological characteristics of GC patients was analyzed, and molecular markers for predicting cancer were identified. Additionally, flow cytometry was used to detect the proportion of lymphocyte subsets in GC patients compared to healthy individuals. The correlations between differential lymphocyte subsets, clinicopathological features of GC patients, and their prognosis were analyzed statistically. Results The study revealed that hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were expressed at lower levels in the blood of GC patients, which is consistent with miRNA-seq findings. The AUC values of hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be effective predictors of GC occurrence. Additionally, hsa-miR-296-5p was found to be negatively correlated with CA724. Furthermore, hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be associated with the stage of the disease and were closely linked to the clinical pathology of GC. The lower the levels of these miRNAs, the greater the clinical stage of the tumor and the worse the prognosis of gastric cancer patients. Finally, the study found that patients with GC had lower absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and lymphocytes compared to healthy individuals. The quantity of CD4+ T lymphocytes and the level of the tumor marker CEA were shown to be negatively correlated. The ROC curve and multivariate logistic regression analysis demonstrated that lymphocyte subsets can effectively predict gastric carcinogenesis and prognosis. Conclusion These miRNAs such as hsa-miR-1306-5p, hsa-miR-3173-5p, hsa-miR-296-5p and lymphocyte subsets such as the absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, lymphocytes are down-regulated in GC and are closely related to the clinicopathological characteristics and prognosis of GC patients. They may serve as new molecular markers for predicting the early diagnosis and prognosis of GC patients.
Collapse
Affiliation(s)
- Jinpeng Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rongrong Liu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zheng
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Gu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Sakurai S, Ishida Y, Shintani T, Yamasaki S, Matsui K, Hamana T, Nobumoto T, Yanamoto S, Hayashido Y. Clinical significance of integrin αV and β superfamily members and focal adhesion kinase activity in oral squamous cell carcinoma: a retrospective observational study. Pathol Oncol Res 2024; 30:1611571. [PMID: 38312516 PMCID: PMC10830843 DOI: 10.3389/pore.2024.1611571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Objectives: Integrins are heterodimeric transmembrane plasma membrane proteins composed of α- and β-chains. They bind to extracellular matrix (ECM) and cytoskeletal proteins as ECM protein receptors. Upon ECM protein binding, integrins activate focal adhesion kinase (FAK) and transduce various signals. Despite their importance, integrin and FAK expression in oral squamous cell carcinoma (OSCC) tissue and the prognosis of patients with OSCC remains elusive. Methods: In a retrospective observational study, we immunohistochemically evaluated integrin αV, β1, β3, β5, β6, FAK, and phosphorylated-FAK (pFAK) expressions as prognostic predictors in 96 patients with OSCC. Patients were classified as positive or negative based on staining intensity, and clinicopathologic characteristics and survival rates of the two groups were compared. The association between above integrin-related proteins and PD-1 or PD-L1 in OSCC tissues was investigated. Results: We observed immunohistochemical integrin αV, β1, β6, β8, and FAK expressions in the cell membrane and cytoplasm but not integrin β3 and β5 in the OSCC tissues. pFAK was expressed in the cytoplasm of OSCC cells. The overall survival rate significantly decreased in pFAK-positive OSCC patients compared to the negative group, and cervical lymph node metastasis significantly increased in integrin β8-positive patients with OSCC (p < 0.05). No association between integrin-related proteins and PD-1 or PD-L1 in OSCC tissues was observed. Conclusion: Our results indicate that pFAK and integrin β8 are prognostic factors for OSCC. Therefore, pFAK- and integrin β8-targeting new oral cancer diagnostic and therapeutic methods hold a promising potential.
Collapse
Affiliation(s)
- Shigeru Sakurai
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yasutaka Ishida
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Sachiko Yamasaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Kensaku Matsui
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Hamana
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tadayoshi Nobumoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yasutaka Hayashido
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Chen X, Zhao Y, Huang Y, Zhu K, Zeng F, Zhao J, Zhang H, Zhu X, Kettenmann H, Xiang X. TREM2 promotes glioma progression and angiogenesis mediated by microglia/brain macrophages. Glia 2023; 71:2679-2695. [PMID: 37641212 DOI: 10.1002/glia.24456] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Triggering receptor expressed on myeloid cell 2 (TREM2), a myeloid cell-specific signaling molecule, controls essential functions of microglia and impacts on the pathogenesis of Alzheimer's disease and other neurodegenerative disorders. TREM2 is also highly expressed in tumor-associated macrophages in different types of cancer. Here, we studied whether TREM2 influences glioma progression. We found a gender-dependent effect of glioma growth in wild-type (WT) animals injected with GL261-EGFP glioma cells. Most importantly, TREM2 promotes glioma progression in male but not female animals. The accumulation of glioma-associated microglia/macrophages (GAMs) and CD31+ blood vessel density is reduced in male TREM2-deficient mice. A transcriptomic analysis of glioma tissue revealed that TREM2 deficiency suppresses immune-related genes. In an organotypic slice model devoid of functional vascularization and immune components from periphery, the tumor size was not affected by TREM2-deficiency. In human resection samples from glioblastoma, TREM2 is upregulated in GAMs. Based on the Cancer Genome Atlas Program (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases, the TREM2 expression levels were negatively correlated with survival. Thus, the TREM2-dependent crosstalk between GAMs and the vasculature formation promotes glioma growth.
Collapse
Affiliation(s)
- Xuezhen Chen
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Zhao
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kaichuan Zhu
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fan Zeng
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junyi Zhao
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhou Zhu
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Helmut Kettenmann
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Xianyuan Xiang
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
Tang Q, Zhang H, Tang R. Identification of two immune subtypes and four hub immune-related genes in ovarian cancer through multiple analysis. Medicine (Baltimore) 2023; 102:e35246. [PMID: 37800814 PMCID: PMC10553066 DOI: 10.1097/md.0000000000035246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Immune classification of ovarian cancer (OV) becomes more and more influential for its immunotherapy. However, current studies had few immune subtypes of OV. It is urgent to explore the immune subtypes and deeper hub immune-related genes (IRGs) of OV for follow-up treatment. A total number of 379 OV samples were obtained from UCSC online website. Single sample gene set enrichment analysis of 29 immune gene sets was used for identifying immune subtypes of OV and gene set variation analysis were used for exploring the hallmarks and Kyoto Encyclopedia of Genes and Genomes pathways of immune types. Two immunity subtypes (Immunity_H and Immunity_L) were identified by single sample gene set enrichment analysis. The OV patients in Immunity_H group had longer overall survival compared with those in Immunity_L group. The Immunity_H had higher stromal score, immune score and estimate score and the tumor purity had the adverse tendency. Besides, the gene set variation analysis enrichment results showed positive relationship between improved immunoreaction and pathways correlated to classical signaling pathway (PI3K/AKT/MTOR, P53, TNFA/NFkB signaling pathways) and immune responses (T/B cell receptor signaling pathways and primary immunodeficiency). Furthermore, 4 hub IRGs (CCR5, IL10RA, ITGAL and PTPRC) were jointly dug by weighted gene co-expression network construction and Cytoscape. Our team also explored the mutations of 4 hub IRGs and PTPRC showed nearly 7% amplification. Besides, 8 immune-checkpoint genes had higher expression in Immuity_H group compared with Immuity_L group, except CD276. The correlation between PD-1/PD-L1 and 4 hub IRGs were explored and gene set enrichment analysis were conducted to explore the underlying mechanisms of PTPRC in OV. Finally, western-blotting showed PTPRC could regulate immune checkpoint PD-L1 expression via JAK-STAT signaling pathway. In a word, 2 immune subtypes and 4 hub IRGs of OV were identified by multiple analysis.
Collapse
Affiliation(s)
- Qin Tang
- Department of Obstetrics and Gynecology, The Jingmen Center Hospital, Jingmen, PR China
| | - Haojie Zhang
- Department of Operating Room, The Jingmen Center Hospital, Jingmen, PR China
| | - Rong Tang
- Department of Pathology, The Jingmen Center Hospital, Jingmen, PR China
| |
Collapse
|
14
|
Wang J, Liu D, Xie Y. GHRL as a prognostic biomarker correlated with immune infiltrates and progression of precancerous lesions in gastric cancer. Front Oncol 2023; 13:1142017. [PMID: 37469414 PMCID: PMC10353738 DOI: 10.3389/fonc.2023.1142017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Objective Ghrelin is a protein that regulate appetite and energy balance in the human body, which is encoded by the ghrelin prepropeptide gene (GHRL). GHRL is linked with carcinogenesis and immune regulation. However, the correlation of GHRL to prognosis and tumor-infiltrating lymphocytes in gastric cancer (GC) remains unclear. Methods In this study, we assessed the transcriptional expression, prognosis, and different clinicopathological features about GHRL and the correlation between GHRL and tumor infiltration immune cells in GC patients based on the data published in the following databases: TIMER, GEPIA, GEO, STRING, UALCAN, TISIDB, and Kaplan-Meier Plotter. Furthermore, R software analysis for GC Correa' cascade was also provided. Finally, GHRL expression in GC tissues was assayed using quantitative real-time polymerase chain reaction and immunohistochemistry. Results We found that GHRL expression in GC samples was lower than in normal samples and verified by quantitative PCR (qPCR) and immunohistochemistry. However, sample type, cancer stage, and worse survival were correlated to high GHRL expression. We also found that the expression of GHRL in dysplasia was significantly lower than that in CNAG and in GC. High GHRL expression was connected with immunomodulators, chemokines, and infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in GC. Conclusions GHRL is a prognostic biomarker for GC patients, and it is correlated with progression of precancerous lesions in GC. It might lead to poor prognosis by regulating tumor immune microenvironment. Studies are important to explore therapeutic targeting GHRL in the future.
Collapse
|
15
|
Wang Q, Xiao G, Li N, Jiang X, Li C. lncRNA PCBP1-AS1 mediated downregulation of ITGAL as a prognostic biomarker in lung adenocarcinoma. Aging (Albany NY) 2023; 15:204756. [PMID: 37256932 DOI: 10.18632/aging.204756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Integrin alpha L (ITGAL) seemed to play a critical role in carcinogenesis and immune regulation. Nevertheless, the effects of ITGAL on non-small cell lung cancer (NSCLC) remain elusive. The present paper intended to determine the effects of ITGAL in NSCLC via the integration of bioinformatic analyses. In this study, we found that the mRNA and protein levels of ITGAL were downregulated in NSCLC tissues. Significantly, low ITGAL expression was related to poorer prognosis and increased malignancy of NSCLC. In addition, GO analysis and KEGG pathway analysis revealed that the coexpressed genes of ITGAL were predominantly associated with various immune-associated signaling pathways, like the T cell receptor signaling pathway, Th17 cell differentiation, chemokine signaling pathway, and NF-κB signaling pathway. Our result indicated that lncRNA-mediated downregulation of integrin alpha L expression was tightly related to immunocyte infiltration, immune modulators, and chemotactic factors in NSCLC, which potentially serves as a biomarker for clinical prognosis prediction and immunotherapy of NSCLC. This is the first comprehensive analysis of ITGAL in the prognosis, immune microenvironment, and immunotherapy of lung adenocarcinoma. ITGAL are promising biomarkers for predicting clinical outcomes and immunotherapy responses in patients with NSCLC.
Collapse
Affiliation(s)
- Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining 629000, Sichuan, P.R. China
| | - GuangJun Xiao
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining 629000, Sichuan, P.R. China
| | - Na Li
- Department of Oncology, Suining Central Hospital, Suining 629000, Sichuan, P.R. China
| | - Xiulin Jiang
- Department of Oncology, Suining Central Hospital, Suining 629000, Sichuan, P.R. China
| | - Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining 629000, Sichuan, P.R. China
| |
Collapse
|
16
|
Xue Y, Zhao G, Pu X, Jiao F. Construction of T cell exhaustion model for predicting survival and immunotherapy effect of bladder cancer based on WGCNA. Front Oncol 2023; 13:1196802. [PMID: 37324016 PMCID: PMC10266200 DOI: 10.3389/fonc.2023.1196802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction The prognosis of bladder cancer (BLCA) and response to immune checkpoint inhibitors (ICIs) are determined by multiple factors. Existed biomarkers for predicting the effect of immunotherapy cannot accurately predict the response of BLCA patients to ICIs. Methods To further accurately stratify patients' response to ICIs and identify potential novel predictive biomarkers, we used the known T cell exhaustion (TEX)-related specific pathways, including tumor necrosis factor (TNF), interleukin (IL)-2, interferon (IFN)-g, and T- cell cytotoxicpathways, combined with weighted correlation network analysis (WGCNA) to analyze the characteristics of TEX in BLCA in detail, constructed a TEX model. Results This model including 28 genes can robustly predict the survival of BLCA and immunotherapeutic efficacy. This model could divide BLCA into two groups, TEXhigh and TEXlow, with significantly different prognoses, clinical features, and reactivity to ICIs. The critical characteristic genes, such as potential biomarkers Charged Multivesicular Body Protein 4C (CHMP4C), SH2 Domain Containing 2A (SH2D2A), Prickle Planar Cell Polarity Protein 3 (PRICKLE3) and Zinc Finger Protein 165 (ZNF165) were verified in BLCA clinical samples by real-time quantitative chain reaction (qPCR) and immunohistochemistry (IHC). Discussion Our findings show that the TEX model can serve as biological markers for predicting the response to ICIs, and the involving molecules in the TEX model might provide new potential targets for immunotherapy in BLCA.
Collapse
Affiliation(s)
- Yuwen Xue
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Guanghui Zhao
- Peking University People’s Hospital, Qingdao Women and Children’s Hospital, Qingdao, China
- Medical Laboratory Center, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Xiaoxin Pu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Fangdong Jiao
- Department of Urology Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| |
Collapse
|
17
|
Angi B, Muccioli S, Szabò I, Leanza L. A Meta-Analysis Study to Infer Voltage-Gated K+ Channels Prognostic Value in Different Cancer Types. Antioxidants (Basel) 2023; 12:antiox12030573. [PMID: 36978819 PMCID: PMC10045123 DOI: 10.3390/antiox12030573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Potassium channels are often highly expressed in cancer cells with respect to healthy ones, as they provide proliferative advantages through modulating membrane potential, calcium homeostasis, and various signaling pathways. Among potassium channels, Shaker type voltage-gated Kv channels are emerging as promising pharmacological targets in oncology. Here, we queried publicly available cancer patient databases to highlight if a correlation exists between Kv channel expression and survival rate in five different cancer types. By multiple gene comparison analysis, we found a predominant expression of KCNA2, KCNA3, and KCNA5 with respect to the other KCNA genes in skin cutaneous melanoma (SKCM), uterine corpus endometrial carcinoma (UCEC), stomach adenocarcinoma (STAD), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). This analysis highlighted a prognostic role of KCNA3 and KCNA5 in SKCM, LUAD, LUSC, and STAD, respectively. Interestingly, KCNA3 was associated with a positive prognosis in SKCM and LUAD but not in LUSC. Results obtained by the analysis of KCNA3-related differentially expressed genes (DEGs); tumor immune cell infiltration highlighted differences that may account for such differential prognosis. A meta-analysis study was conducted to investigate the role of KCNA channels in cancer using cancer patients’ datasets. Our study underlines a promising correlation between Kv channel expression in tumor cells, in infiltrating immune cells, and survival rate.
Collapse
|
18
|
Tang S, Liu D, Fang Y, Yong L, Zhang Y, Guan M, Lin X, Wang H, Cai F. Low expression of HIF1AN accompanied by less immune infiltration is associated with poor prognosis in breast cancer. Front Oncol 2023; 13:1080910. [PMID: 36816977 PMCID: PMC9932925 DOI: 10.3389/fonc.2023.1080910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background Hypoxia-inducible factor 1-alpha (HIF-1α) stability and transcriptional action are reduced by the hypoxia-inducible factor 1-alpha subunit suppressor (HIF1AN). Its inappropriate expression is associated with the development of cancer and immune control. It is yet unknown how HIF1AN, clinical outcomes, and immune involvement in breast cancer (BC) are related. Methods Using the GEPIA, UALCAN, TIMER, Kaplan-Meier plotter, and TISIDB datasets, a thorough analysis of HIF1AN differential expression, medical prognosis, and the relationship between HIF1AN and tumor-infiltrating immune cells in BC was conducted. Quantitative real-time PCR (qRT-PCR) analysis of BC cells were used for external validation. Results The findings revealed that, as compared to standard specimens, BC cells had significantly lower levels of HIF1AN expression. Good overall survival (OS) for BC was associated with higher HIF1AN expression. Additionally, in BC, the expression of HIF1AN was closely associated with the chemokines and immune cell infiltration, including neutrophils, macrophages, T helper cells, B cells, Tregs, monocytes, dendritic cells, and NK cells. A high correlation between HIF1AN expression and several immunological indicators of T-cell exhaustion was particularly revealed by the bioinformatic study. Conclusions HIF1AN is a predictive indicator for breast tumors, and it is useful for predicting survival rates.
Collapse
Affiliation(s)
- Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongyang Liu
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Fang
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liyun Yong
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengying Guan
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyan Lin
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Wang
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Fengfeng Cai, ; Hui Wang,
| | - Fengfeng Cai
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Fengfeng Cai, ; Hui Wang,
| |
Collapse
|
19
|
Zhou H, Jing S, Liu Y, Wang X, Duan X, Xiong W, Li R, Peng Y, Ai Y, Fu D, Wang H, Zhu Y, Zeng Z, He Y, Ye Q. Identifying the key genes of Epstein-Barr virus-regulated tumour immune microenvironment of gastric carcinomas. Cell Prolif 2022; 56:e13373. [PMID: 36519208 PMCID: PMC9977676 DOI: 10.1111/cpr.13373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
The Epstein-Barr virus (EBV) is involved in the carcinogenesis of gastric cancer (GC) upon infection of normal cell and induces a highly variable composition of the tumour microenvironment (TME). However, systematic bioinformatics analysis of key genes associated with EBV regulation of immune infiltration is still lacking. In the present study, the TCGA and GEO databases were recruited to analyse the association between EBV infection and the profile of immune infiltration in GC. The weighted gene co-expression analysis (WGCNA) was applied to shed light on the key gene modules associated with EBV-associated immune infiltration in GC. 204 GC tissues were used to analysed the expression of key hub genes by using the immunohistochemical method. Real-time PCR was used to evaluate the association between the expression of EBV latent/lytic genes and key immune infiltration genes. Our results suggested that EBV infection changed the TME of GC mainly regulates the TIICs. The top three hub genes of blue (GBP1, IRF1, and LAP3) and brown (BIN2, ITGAL, and LILRB1) modules as representative genes were associated with EBV infection and GC immune infiltration. Furthermore, EBV-encoded LMP1 expression is account for the overexpression of GBP1 and IRF1. EBV infection significantly changes the TME of GC, and the activation of key immune genes was more dependent on the invasiveness of the whole EBV virion instead of single EBV latent/lytic gene expression.
Collapse
Affiliation(s)
- Heng Zhou
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shuili Jing
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yu Liu
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and TechnologyWuhanHubeiChina
| | - Xuming Wang
- Department of PathologyGuilin Medical UniversityGuilinGuangxiChina
| | - Xingxiang Duan
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Wei Xiong
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ruohan Li
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Youjian Peng
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yilong Ai
- Foshan Hospital of Stomatology, School of Medicine, Foshan UniversityFoshanGuangdongChina
| | - Dehao Fu
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Wang
- Demonstration Center for Experimental Basic Medicine Education, Wuhan UniversityWuhanChina
| | - Yaoqi Zhu
- Institute of Regenerative and Translational MedicineTianyou Hospital of Wuhan University of Science and TechnologyWuhanHubeiChina,Department of oral and maxillofacial surgeryHospital of Taikang Tongji (Wuhan)WuhanChina
| | - Zhi Zeng
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yan He
- Institute of Regenerative and Translational MedicineTianyou Hospital of Wuhan University of Science and TechnologyWuhanHubeiChina,Department of oral and maxillofacial surgery, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Qingsong Ye
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina,Department of oral and maxillofacial surgery, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
20
|
[MiR-4772 modulates tumor immune microenvironment by regulating immune- related genes in ovarian cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1638-1645. [PMID: 36504056 PMCID: PMC9742773 DOI: 10.12122/j.issn.1673-4254.2022.11.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To explore the regulatory role of miR-4772 in the formation of tumor immune microenvironment in ovarian cancer. METHODS The optimal cutoff level of PD-L1 expression was calculated based on data from 294 ovarian cancer patients in the TCGA database. The differentially expressed genes (DEGs) between high and low PD-L1 expression groups were screened, and the important DEGs were identified by correlation analysis. WGCNA analysis was performed to select the weighted genes and PD-L1-related miRNAs, from which the hub genes were obtained by intersection analysis. ssGSEA analysis was used to evaluate the effect of PD-L1 and miR-4772 expressions on the tumor immune microenvironment in ovarian cancer. KEGG analysis was used to identify the involved signal pathways, and the interactions between the hub genes were mapped by protein-protein interaction (PPI) analysis. Survival analysis was carried out to identify the survival-related hub genes, and the results were validated using the data of 399 patients with ovarian cancer from GEO database and the sequencing results of SKOV3 cells transfected with miR-4772 mimics or inhibitor. RESULTS According the optimal cutoff level of PD-L1 expression of 1.31582 (90th quantile), the patients were divided into high- and low-PD-L1 expression groups. A total of 840 DEGs were identified, including 549 significantly up-regulated genes and 291 down-regulated genes. Among them, 20 important DEGs were found to closely correlate with miR-4772 expression, and WGCNA analysis identified 48 weighted genes significantly correlated with miR-4772. Twelve genes were identified as both key DEGs and weighted genes and were treated as the hub genes. ssGSEA analysis showed that both the patients with high PD-L1 expressions and those with high miR-4772 expressions showed more active immune infiltration and functional activity. The 12 hub genes were involved mainly in immune-related signaling pathways, and PPI analysis suggested significant interactions among the hub genes. The two hub genes CD96 and TBX21 showed close correlation with the survival of ovarian cancer patients. The sequencing results of SKOV3 cells transfected with miR-4772 mimics or inhibitor showed that the changes in miR-4772 expression level caused obvious changes in the expressions of the 12 hub genes and PD-L1. CONCLUSION MiR-4772 plays a regulatory role in the formation of tumor immune microenvironment in ovarian cancer by regulating 12 hub genes.
Collapse
|
21
|
Quirino MWL, Albuquerque APB, De Souza MFD, Da Silva Filho AF, Martins MR, Da Rocha Pitta MG, Pereira MC, De Melo Rêgo MJB. alpha2,3 sialic acid processing enzymes expression in gastric cancer tissues reveals that ST3Gal3 but not Neu3 are associated with Lauren's classification, angiolymphatic invasion and histological grade. Eur J Histochem 2022; 66. [PMID: 36172711 PMCID: PMC9577379 DOI: 10.4081/ejh.2022.3330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 08/27/2022] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Despite progress in the last decades, there are still no reliable biomarkers for the diagnosis of and prognosis for GC. Aberrant sialylation is a widespread critical event in the development of GC. Neuraminidases (Neu) and sialyltransferases (STs) regulate the ablation and addition of sialic acid during glycoconjugates biosynthesis, and they are a considerable source of biomarkers in various cancers. This study retrospectively characterized Neu3 and ST3Gal3 expression by immunohistochemistry in 71 paraffin-embedded GC tissue specimens and analyzed the relationship between their expression and the clinicopathological parameters. Neu3 expression was markedly increased in GC tissues compared with non-tumoral tissues (p<0.0001). Intratumoral ST3Gal3 staining was significantly associated with intestinal subtype (p=0.0042) and was negatively associated with angiolymphatic invasion (p=0.0002) and higher histological grade G3 (p=0.0066). Multivariate analysis revealed that ST3Gal3 positivity is able to predict Lauren's classification. No associations were found between Neu3 staining and clinical parameters. The in silico analysis of mRNA expression in GC validation cohorts corroborates the significant ST3Gal3 association with higher histological grade observed in our study. These findings suggest that ST3Gal3 expression may be an indicator for aggressiveness of primary GC.
Collapse
Affiliation(s)
- Michael W L Quirino
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Amanda P B Albuquerque
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Maria F D De Souza
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Antônio F Da Silva Filho
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | | | - Maira G Da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Michelly C Pereira
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Moacyr J B De Melo Rêgo
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| |
Collapse
|
22
|
Zhou Y, Shi W, Zhao D, Xiao S, Wang K, Wang J. Identification of Immune-Associated Genes in Diagnosing Aortic Valve Calcification With Metabolic Syndrome by Integrated Bioinformatics Analysis and Machine Learning. Front Immunol 2022; 13:937886. [PMID: 35865542 PMCID: PMC9295723 DOI: 10.3389/fimmu.2022.937886] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Background Immune system dysregulation plays a critical role in aortic valve calcification (AVC) and metabolic syndrome (MS) pathogenesis. The study aimed to identify pivotal diagnostic candidate genes for AVC patients with MS. Methods We obtained three AVC and one MS dataset from the gene expression omnibus (GEO) database. Identification of differentially expressed genes (DEGs) and module gene via Limma and weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, protein–protein interaction (PPI) network construction, and machine learning algorithms (least absolute shrinkage and selection operator (LASSO) regression and random forest) were used to identify candidate immune-associated hub genes for diagnosing AVC with MS. To assess the diagnostic value, the nomogram and receiver operating characteristic (ROC) curve were developed. Finally, immune cell infiltration was created to investigate immune cell dysregulation in AVC. Results The merged AVC dataset included 587 DEGs, and 1,438 module genes were screened out in MS. MS DEGs were primarily enriched in immune regulation. The intersection of DEGs for AVC and module genes for MS was 50, which were mainly enriched in the immune system as well. Following the development of the PPI network, 26 node genes were filtered, and five candidate hub genes were chosen for nomogram building and diagnostic value evaluation after machine learning. The nomogram and all five candidate hub genes had high diagnostic values (area under the curve from 0.732 to 0.982). Various dysregulated immune cells were observed as well. Conclusion Five immune-associated candidate hub genes (BEX2, SPRY2, CXCL16, ITGAL, and MORF4L2) were identified, and the nomogram was constructed for AVC with MS diagnosis. Our study could provide potential peripheral blood diagnostic candidate genes for AVC in MS patients.
Collapse
Affiliation(s)
- Yufei Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, The Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shengjue Xiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jing Wang, ; Kai Wang,
| | - Jing Wang
- Department of Geriatric Medicine, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Wang, ; Kai Wang,
| |
Collapse
|