1
|
Zhang W, Li R, Lu D, Wang X, Wang Q, Feng X, Qi S, Zhang X. Phospholipids and peroxisomes in ferroptosis: the therapeutic target of acupuncture regulating vascular cognitive impairment and dementia. Front Aging Neurosci 2025; 17:1512980. [PMID: 40365351 PMCID: PMC12070441 DOI: 10.3389/fnagi.2025.1512980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/26/2025] [Indexed: 05/15/2025] Open
Abstract
Ferroptosis, since its conceptualization in 2012, has witnessed an exponential growth in research interest over recent years. It is regulated by various cellular metabolic pathways during chronic cerebral ischemia and hypoxia, including reactive oxygen species (ROS) generation, iron accumulation, abnormalities in glutathione metabolism, and disruptions in lipid and glucose metabolism. With the deepening and widespread research, ferroptosis has emerged as a critical pathway in the pathogenesis of vascular cognitive impairment and dementia (VCID). This unique cell death pathway caused by iron-dependent phospholipid peroxidation is strongly related to VICD. We examine the impact of phospholipid composition on neuronal susceptibility to ferroptosis, with a particular focus on the critical role of polyunsaturated fatty acids (PUFAs) in this process. Intriguingly, peroxisomes, as key regulators of lipid metabolism and oxidative stress, influence the susceptibility of neuronal cells to ferroptosis through the synthesis of plasmalogens and other lipid species. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of acupuncture for ferroptosis, the potential functions of acupuncture in peroxisomal functions and phospholipid metabolism, and its neuroprotective effects in VCID, together with a potential for therapeutic targeting. As such, this highlights the theoretical basis for the application of acupuncture in VCID through multi-target regulation of ferroptosis. This review underscores the potential of acupuncture as a non-pharmacological therapeutic approach in VCID, offering new insights into its role in modulating ferroptosis and associated metabolic pathways for neuroprotection.
Collapse
Affiliation(s)
- Wenyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiyu Li
- Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Donglei Lu
- Sports Training Academy of Tianjin University of Sport, Tianjin, China
| | - Xinliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuxuan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuyang Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sai Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
2
|
Jinson S, Zhang Z, Lancaster GI, Murphy AJ, Morgan PK. Iron, lipid peroxidation, and ferroptosis play pathogenic roles in atherosclerosis. Cardiovasc Res 2025; 121:44-61. [PMID: 39739567 DOI: 10.1093/cvr/cvae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Oxidation of lipids, excessive cell death, and iron deposition are prominent features of human atherosclerotic plaques. While extensive research has established the detrimental roles of lipid oxidation and apoptosis in atherosclerosis development, the involvement of iron in atherogenesis is not yet fully understood. With the emergence of an iron-dependent form of cell death termed ferroptosis, new attention has been brought to the complex inter-play among iron, ferroptosis, and atherosclerosis. Mechanistically, ferroptosis is caused by the lethal accumulation of iron-mediated lipid peroxides. Emerging studies have underscored ferroptosis as a contributor to worsened atherosclerosis. Herein, we review the evidence that oxidative damage and iron overload in the context of atherosclerosis may promote ferroptosis within plaques. Furthermore, we summarize recent findings of lipid peroxidation, thereby potentially ferroptosis, in various plaque cell types-such as endothelial cells, macrophages, dendritic cells, T cells, and vascular smooth muscle cells-across different stages of atherosclerosis. Understanding how these processes influence atherosclerotic plaque progression may permit targeting stage-dependent ferroptosis in each cell population and could provide a rationale for developing cell type-specific intervention strategies to mitigate atherogenic ferroptosis effectively.
Collapse
Affiliation(s)
- Swetha Jinson
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Ziyang Zhang
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Graeme I Lancaster
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Pooranee K Morgan
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Gao Y, Wang B, Hu M, Ma Y, Zheng B. The Role of Iron in Atherosclerosis and its Association with Related Diseases. Curr Atheroscler Rep 2024; 27:1. [PMID: 39520606 DOI: 10.1007/s11883-024-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW This review aims to elucidate the multifaceted role of iron in the pathogenesis of atherosclerosis. The primary objective is to summarize recent advances in understanding how iron contributes to atherosclerosis through various cellular mechanisms. Additionally, the review explores the therapeutic implications of targeting iron metabolism in the prevention and treatment of cardiovascular diseases. RECENT FINDINGS A growing body of literature suggests that excess iron accelerates the progression of atherosclerosis, with the deleterious form of iron, non-transferrin-bound iron (NTBI), particularly exacerbating this process. Furthermore, iron overload has been demonstrated to play a pivotal role in endothelial cells, vascular smooth muscle cells, and macrophages, contributing to plaque instability and disease progression by promoting lipid peroxidation, oxidative stress, inflammatory responses, and ferroptosis. Iron plays a complex role in atherosclerosis, influencing multiple cellular processes and promoting disease progression. By promoting oxidative stress, inflammation, and ferroptosis, iron exacerbates endothelial dysfunction, smooth muscle cell calcification, and the formation of macrophage-derived foam cells. Targeted therapies focusing on iron metabolism have proven effective in treating atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
- Yingbo Gao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Boda Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengrui Hu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuhan Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
4
|
Feng F, Luo R, Mu D, Cai Q. Ferroptosis and Pyroptosis in Epilepsy. Mol Neurobiol 2024; 61:7354-7368. [PMID: 38383919 DOI: 10.1007/s12035-024-04018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Epilepsy is sudden, recurrent, and transient central nervous system dysfunction caused by abnormal discharge of neurons in the brain. Ferroptosis and pyroptosis are newly discovered ways of programmed cell death. One of the characteristics of ferroptosis is the oxidative stress generated by lipid peroxides. Similarly, pyroptosis has unique pro-inflammatory properties. As both oxidative stress and neuroinflammation are significant contributors to the pathogenesis of epilepsy, increasing evidence shows that ferroptosis and pyroptosis are closely related to epilepsy. This article reviews the current comprehension of ferroptosis and pyroptosis and elucidates potential mechanisms by which ferroptosis and pyroptosis may contribute to epilepsy. In addition, we also highlight the possible interactions between ferroptosis and pyroptosis because they reportedly coexist in many diseases, and increasing studies have demonstrated the convergence of pathways between the two. This is of great significance for explaining the occurrence and development of epilepsy and provides a new therapeutic perspective for the treatment of epilepsy.
Collapse
Affiliation(s)
- Fan Feng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Qianyun Cai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Jiang Q, Wan R, Jiang J, Li T, Li Y, Yu S, Zhao B, Li Y. Interaction between macrophages and ferroptosis: Metabolism, function, and diseases. Chin Med J (Engl) 2024; 138:00029330-990000000-01224. [PMID: 39245648 PMCID: PMC11882282 DOI: 10.1097/cm9.0000000000003189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Indexed: 09/10/2024] Open
Abstract
ABSTRACT Ferroptosis, an iron-dependent programmed cell death process driven by reactive oxygen species-mediated lipid peroxidation, is regulated by several metabolic processes, including iron metabolism, lipid metabolism, and redox system. Macrophages are a group of innate immune cells that are widely distributed throughout the body, and play pivotal roles in maintaining metabolic balance by its phagocytic and efferocytotic effects. There is a profound association between the biological functions of macrophage and ferroptosis. Therefore, this review aims to elucidate three key aspects of the unique relationship between macrophages and ferroptosis, including macrophage metabolism and their regulation of cellular ferroptosis; ferroptotic stress that modulates functions of macrophage and promotion of inflammation; and the effects of macrophage ferroptosis and its role in diseases. Finally, we also summarize the possible mechanisms of macrophages in regulating the ferroptosis process at the global and local levels, as well as the role of ferroptosis in the macrophage-mediated inflammatory process, to provide new therapeutic insights for a variety of diseases.
Collapse
Affiliation(s)
- Qiaoling Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Rongjun Wan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Tiao Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yantong Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Steven Yu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yuanyuan Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
6
|
Dai Q, Huang S, Fang Y, Ding X. Identifying the Potential Diagnostic Gene Biomarkers and Forecasting the Potential Therapeutic Agents for Advanced Diabetic Nephropathy Based on Pyroptosis and Ferroptosis. J Inflamm Res 2024; 17:5763-5779. [PMID: 39224660 PMCID: PMC11368145 DOI: 10.2147/jir.s467388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Background Diabetic nephropathy (DN) is a prevalent complication of diabetes, often leading to end-stage kidney disease (ESKD). Advanced DN progresses to ESKD rapidly, yet effective diagnostic indicators and treatments are lacking. Methods Two DN-related datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the R packages. Pyroptosis-related genes (PRGs) and ferroptosis-related genes (FRGs) were collected from their respective database. Pyroptosis- and ferroptosis-related differentially expressed genes (PFRDEGs) were identified by overlapping DEGs, PRGs, and FRGs for further analysis, including functional enrichment and immune infiltration. Hub genes were identified using a PPI network via MCODE-plugin in Cytoscape. GeneMANIA was utilized to explore intermolecular interactions among hub genes. Based on these hub genes, a diagnostic model was constructed using the receiver operating characteristic curve and potential therapeutic agents were retrieved. Correlation analysis between hub genes and estimated glomerular filtration rate was performed using Nephroseq v5 database, and expression of hub genes was validated in external GEO database, Nephroseq v5 database and DN mice in vivo. Results Four hub genes (CYBB, LCN2, JUN and ADIPOQ) were identified, and three of the four hub genes (CYBB, LCN2 and ADIPOQ) were found to be potential biomarkers for advanced DN. On this basis, three potential therapeutic agents were screened. More importantly, a series of biological experiments confirmed that CYBB and LCN2 were significantly up-regulated in DN mice. Conclusion This study identifies three hub genes as diagnostic biomarkers and mines three potential therapeutic agents for advanced DN, providing new insights into the role of pyroptosis and ferroptosis in advanced DN and laying the foundation for future research.
Collapse
Affiliation(s)
- Qin Dai
- Department of Nephrology, Xuhui District Central Hospital, Shanghai, People’s Republic of China
- Department of Nephrology, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Siyi Huang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Jia Z, Zhang X, Li Z, Yan H, Tian X, Luo C, Ma K, Li L, Zhang L. Hydrogen sulfide mitigates ox‑LDL‑induced NLRP3/caspase‑1/GSDMD dependent macrophage pyroptosis by S‑sulfhydrating caspase‑1. Mol Med Rep 2024; 30:135. [PMID: 38873985 PMCID: PMC11188054 DOI: 10.3892/mmr.2024.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Macrophage pyroptosis mediates vascular inflammation and atherosclerosis (AS). Hydrogen sulfide (H2S) exerts a protective role in preventing inflammation and AS. However, its molecular mechanisms of regulating the pyroptosis signaling pathway and inhibiting macrophage pyroptosis remain unexplored. The present study aimed to determine whether H2S mitigates macrophage pyroptosis by downregulating the pyroptosis signaling pathway and S‑sulfhydrating caspase‑1 under the stimulation of oxidized low‑density lipoprotein (ox‑LDL), a pro‑atherosclerotic factor. Macrophages derived from THP‑1 monocytes were pre‑treated using exogenous H2S donors sodium hydrosulfide (NaHS) and D,L‑propargylglycine (PAG), a pharmacological inhibitor of endogenous H2S‑producing enzymes, alone or in combination. Subsequently, cells were stimulated with ox‑LDL or the desulfhydration reagent dithiothreitol (DTT) in the presence or absence of NaHS and/or PAG. Following treatment, the levels of H2S in THP‑1 derived macrophages were measured by a methylene blue colorimetric assay. The pyroptotic phenotype of THP‑1 cells was observed and evaluated by light microscopy, Hoechst 33342/propidium iodide fluorescent staining and lactate dehydrogenase (LDH) release assay. Caspase‑1 activity in THP‑1 cells was assayed by caspase‑1 activity assay kit. Immunofluorescence staining was used to assess the accumulation of active caspase‑1. Western blotting and ELISA were performed to determine the expression of pyroptosis‑specific markers (NLRP3, pro‑caspase‑1, caspase‑1, GSDMD and GSDMD‑N) in cells and the secretion of pyroptosis‑related cytokines [interleukin (IL)‑1β and IL‑18] in the cell‑free media, respectively. The S‑sulfhydration of pro‑caspase‑1 in cells was assessed using a biotin switch assay. ox‑LDL significantly induced macrophage pyroptosis by activating the pyroptosis signaling pathway. Inhibition of endogenous H2S synthesis by PAG augmented the pro‑pyroptotic effects of ox‑LDL. Conversely, exogenous H2S (NaHS) ameliorated ox‑LDL‑and ox‑LDL + PAG‑induced macrophage pyroptosis by suppressing the activation of the pyroptosis signaling pathway. Mechanistically, ox‑LDL and the DTT increased caspase‑1 activity and downstream events (IL‑1β and IL‑18 secretion) of the caspase‑1‑dependent pyroptosis pathway by reducing S‑sulfhydration of pro‑caspase‑1. Conversely, NaHS increased S‑sulfhydration of pro‑caspase‑1, reducing caspase‑1 activity and caspase‑1‑dependent macrophage pyroptosis. The present study demonstrated the molecular mechanism by which H2S ameliorates macrophage pyroptosis by suppressing the pyroptosis signaling pathway and S‑sulfhydration of pro‑caspase‑1, thereby suppressing the generation of active caspase-1 and activity of caspase-1.
Collapse
Affiliation(s)
- Zhenli Jia
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Xulin Zhang
- Department of Blood Transfusion, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Zhiyi Li
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Hanyu Yan
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Xiangqin Tian
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Chenghua Luo
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Ketao Ma
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Ling Li
- Department of Medical Morphology, Medical Teaching Experimental Center, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Liang Zhang
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
8
|
Di C, Ji M, Li W, Liu X, Gurung R, Qin B, Ye S, Qi R. Pyroptosis of Vascular Smooth Muscle Cells as a Potential New Target for Preventing Vascular Diseases. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07578-w. [PMID: 38822974 DOI: 10.1007/s10557-024-07578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Vascular remodeling is the adaptive response of the vessel wall to physiological and pathophysiological changes, closely linked to vascular diseases. Vascular smooth muscle cells (VSMCs) play a crucial role in this process. Pyroptosis, a form of programmed cell death characterized by excessive release of inflammatory factors, can cause phenotypic transformation of VSMCs, leading to their proliferation, migration, and calcification-all of which accelerate vascular remodeling. Inhibition of VSMC pyroptosis can delay this process. This review summarizes the impact of pyroptosis on VSMCs and the pathogenic role of VSMC pyroptosis in vascular remodeling. We also discuss inhibitors of key proteins in pyroptosis pathways and their effects on VSMC pyroptosis. These findings enhance our understanding of the pathogenesis of vascular remodeling and provide a foundation for the development of novel medications that target the control of VSMC pyroptosis as a potential treatment strategy for vascular diseases.
Collapse
Affiliation(s)
- Chang Di
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China.
| | - Meng Ji
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Wenjin Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Xiaoyi Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Rijan Gurung
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Boyang Qin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Shu Ye
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China.
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
9
|
Liang W, Wei R, Zhu X, Li J, Lin A, Chen J, Wu W, Jie Q. Downregulation of HMGB1 carried by macrophage-derived extracellular vesicles delays atherosclerotic plaque formation through Caspase-11-dependent macrophage pyroptosis. Mol Med 2024; 30:38. [PMID: 38493291 PMCID: PMC10943908 DOI: 10.1186/s10020-023-00753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/02/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Macrophage-derived extracellular vesicle (macrophage-EV) is highly studied for its regulatory role in atherosclerosis (AS). Our current study tried to elucidate the possible role of macrophage-EV loaded with small interfering RNA against high-mobility group box 1 (siHMGB1) affecting atherosclerotic plaque formation. METHODS In silico analysis was performed to find critical factors in mouse atherosclerotic plaque formation. EVs secreted by RAW 264.7 cells were collected by ultracentrifugation and characterized, followed by the preparation of macrophage-EV-loaded siHMGB1 (macrophage-EV/siHMGB1). ApoE-/- mice were used to construct an AS mouse model by a high-fat diet, followed by injection of macrophage-EV/siHMGB1 to assess the in vivo effect of macrophage-EV/siHMGB1 on AS mice. RAW264.7 cells were subjected to ox-LDL, LPS or macrophage-EV/siHMGB1 for analyzing the in vitro effect of macrophage-EV/siHMGB1 on macrophage pyrophosis and inflammation. RESULTS In silico analysis found that HMGB1 was closely related to the development of AS. Macrophage-EV/siHMGB could inhibit the release of HMGB1 from macrophages to outside cells, and the reduced HMGB1 release could inhibit foam cell formation. Besides, macrophage-EV/siHMGB also inhibited the LPS-induced Caspase-11 activation, thus inhibiting macrophage pyroptosis and preventing atherosclerotic plaque formation. CONCLUSION Our results proved that macrophage-EV/siHMGB could inhibit foam cell formation and suppress macrophage pyroptosis, finally preventing atherosclerotic plaque formation in AS mice.
Collapse
Affiliation(s)
- Weijie Liang
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Ruibin Wei
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Xingxing Zhu
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Jinliang Li
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Aiwen Lin
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Jun Chen
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Wen Wu
- Department of Endocrinology, Guangdong Geriatrics Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, No. 106, Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Qiang Jie
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China.
| |
Collapse
|
10
|
Zhao N, Yu X, Zhu X, Song Y, Gao F, Yu B, Qu A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J Cardiovasc Transl Res 2024; 17:133-152. [PMID: 38091232 DOI: 10.1007/s12265-023-10470-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 02/28/2024]
Abstract
Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental pathophysiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclerosis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism pinpointing the relationship between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Yanting Song
- Department of Pathology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| |
Collapse
|
11
|
Gu Y, Cui M, Wang W, Zhang J, Wang H, Zheng C, Lei L, Ji M, Chen W, Xu Y, Wang P. Visualization of the Ferroptosis in Atherosclerotic Plaques with Nanoprobe Engineered by Macrophage Cell Membranes. Anal Chem 2024; 96:281-291. [PMID: 38153251 DOI: 10.1021/acs.analchem.3c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Atherosclerosis (AS) is the root cause of cardiovascular diseases. Ferroptosis is characterized by highly iron-dependent lipid peroxidation and has been reported to play an important role in the pathogenesis of AS. Visualization of the ferroptosis process in atherosclerotic plaques is of great importance for diagnosing and treating AS. In this work, the rationally designed fluorescent probe FAS1 exhibited excellent advantages including large Stokes shift, sensitivity to environmental viscosity, good photostability, and improved water solubility. It also could co-locate with commercial lipid droplets (LDs) probes (BODIPY 493/503) well in RAW264.7 cells treated by the ferroptosis inducer. After self-assembly into nanoparticles and then encapsulation with macrophage membranes, the engineered FAS1@MM NPs could successfully target the atherosclerotic plaques in Western diet-induced apolipoprotein E knockout (ApoE-/-) mice and reveal the association of ferroptosis with AS through fluorescence imaging in vivo. This study may provide additional insights into the roles of ferroptosis in the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Yinhui Gu
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Mengyuan Cui
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing 100050, China
| | - Jiaqi Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Huizhe Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Zheng
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Lijuan Lei
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing 100050, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wei Chen
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing 100050, China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
12
|
Zhu H, Liang H, Gao Z, Zhang X, He Q, He C, Cai C, Chen J. MiR-483-5p downregulation alleviates ox-LDL induced endothelial cell injury in atherosclerosis. BMC Cardiovasc Disord 2023; 23:521. [PMID: 37891465 PMCID: PMC10612234 DOI: 10.1186/s12872-023-03496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/04/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND In light of the abnormal expression of microRNA (miR-483-5p) in patients with atherosclerosis (AS), its role in vascular endothelial cell injury was explored. And the mechanisms related to autophagy were also elucidated. METHODS Human umbilical vein endothelial cells (HUVECs) were given 100 mg/L ox-LDL to induce endothelial injury. Cell transfection was done to regulate miR-483-5p levels. Cell viability and apoptosis were detected. qRT-PCR was employed for the mRNA levels' detection. RESULTS Autophagic flux impairment of HUVECs was detected after ox-LDL treatment, along with the upregulation of miR-483-5p. Ox-LDL inhibited cell viability and promoted cell apoptosis, but these influences were changed by miR-483-5p downregulation. MiR-483-5p downregulation decreased the mRNA levels of IL-1β, IL-6, ICAM-1 and VCAM-1. 3-MA, the autophagy inhibitor, reversed the beneficial role of miR-483-5p downregulation in ox-LDL-induced HUVECs' injury. TIMP2 acts as a target gene of miR-483-5p, and was downregulated in HUVEC models. CONCLUSION MiR-483-5p downregulation alleviated ox-LDL-induced endothelial injury via activating autophagy, this might be related to TIMP2.
Collapse
Affiliation(s)
- Hezhong Zhu
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Hui Liang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhen Gao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China
| | - Xiaoqiao Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Qian He
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China
| | - Chaoyong He
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China
| | - Chao Cai
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China.
| | - Jiajuan Chen
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China.
| |
Collapse
|
13
|
Wu H, Li D, Zhang T, Zhao G. Novel Mechanisms of Perioperative Neurocognitive Disorders: Ferroptosis and Pyroptosis. Neurochem Res 2023; 48:2969-2982. [PMID: 37289349 DOI: 10.1007/s11064-023-03963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Perioperative neurocognitive disorders (PNDs) are some of the most common postoperative complications among the elderly and susceptible individuals, which significantly worsens the clinical outcome of patients. However, the prevention and treatment strategies of PNDs are difficult to determine and implement since the pathogenesis of PNDs is not well understood. The development of living organisms is associated with active and organized cell death, which is essential for maintaining the homeostasis of life. Ferroptosis is a programmed cell death (different from apoptosis and necrosis) mainly caused by an imbalance in the generation and degradation of intracellular lipid peroxides due to iron overload. Pyroptosis is an inflammatory cell death characterized by the creation of membrane holes mediated by the gasdermin (GSDM) family, followed by cell lysis and the release of pro-inflammatory cytokines. Ferroptosis and pyroptosis are involved in the pathogenesis of various central nervous system (CNS) diseases. Furthermore, ferroptosis and pyroptosis are closely associated with the occurrence and development of PNDs. This review summarizes the main regulatory mechanisms of ferroptosis and pyroptosis and the latest related to PNDs. Based on the available evidence, potential intervention strategies that can alleviate PNDs by inhibiting ferroptosis and pyroptosis have also been provided.
Collapse
Affiliation(s)
- Hang Wu
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin, China
| | - Dongmei Li
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin, China
| | - Te Zhang
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin, China
| | - Guoqing Zhao
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin, China.
- Jilin University, 2699 Forward Avenue, Changchun, Jilin, China.
| |
Collapse
|
14
|
Liu W, Yu W, Xie D, Wang Q, Zhao H, Lv J, He F, Xu C, Chen B, Yamamoto T, Koyama H, Cheng J. High Uric Acid Promotes Atherosclerotic Plaque Instability by Apoptosis Targeted Autophagy. J Atheroscler Thromb 2023; 30:1176-1186. [PMID: 36436875 PMCID: PMC10499446 DOI: 10.5551/jat.63645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/16/2022] [Indexed: 09/05/2023] Open
Abstract
AIMS Acute rupture or erosion of unstable atherosclerotic plaques is a major cause of adverse consequences of atherosclerotic cardiovascular disease, often leading to myocardial infarction or stroke. High uric acid (HUA) is associated with the increasing risk of cardiovascular events and death. However, the mechanism by which HUA promotes atherosclerosis and whether HUA affects plaque stability are still unclear. METHODS We constructed an atherosclerotic Apoe-/- mouse model with HUA. The progression of atherosclerosis and plaques was determined by Oil Red O staining, hematoxylin and eosin (H&E) staining, and Masson staining. TdT-mediated dUTP nick-end labeling assay and immunohistochemistry were used to observe the changes of apoptosis and autophagy in plaques, respectively. Then, we validated the in vivo results with RAW 264.7 cell line. RESULTS HUA promoted atherosclerosis and exacerbated plaque vulnerability, including significantly increased macrophage infiltration, lipid accumulation, enlarged necrotic cores, and decreased collagen fibers. HUA increased cell apoptosis and inhibited autophagy in plaques. In vitro results showed that HUA decreased cell viability and increased cell apoptosis in foam cells macrophages treated with oxidized low-density lipoprotein. An activator of autophagy, rapamycin, can partially reverse the increasing apoptosis. CONCLUSION HUA promoted atherosclerosis and exacerbated plaque vulnerability, and HUA facilitates foam cell apoptosis by inhibiting autophagy.
Collapse
Affiliation(s)
- Weidong Liu
- Department of Internal Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Wei Yu
- Department of Internal Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - De Xie
- Department of Internal Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Qiang Wang
- Department of Internal Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Hairong Zhao
- Department of Internal Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jiaming Lv
- Department of Internal Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Furong He
- Department of Internal Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chenxi Xu
- Department of Internal Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Binyang Chen
- Department of Internal Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Tetsuya Yamamoto
- Health Evaluation Center, Osaka Gyoumeikan Hospital, Osaka, Japan
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Jidong Cheng
- Department of Internal Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| |
Collapse
|
15
|
Marrero AD, Quesada AR, Martínez-Poveda B, Medina MÁ, Cárdenas C. A Proteomic Study of the Bioactivity of Annona muricata Leaf Extracts in HT-1080 Fibrosarcoma Cells. Int J Mol Sci 2023; 24:12021. [PMID: 37569395 PMCID: PMC10418445 DOI: 10.3390/ijms241512021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Graviola (Annona muricata) is a tropical plant with many traditional ethnobotanic uses and pharmacologic applications. A metabolomic study of both aqueous and DMSO extracts from Annona muricata leaves recently allowed us to identify dozens of bioactive compounds. In the present study, we use a proteomic approach to detect altered patterns in proteins on both conditioned media and extracts of HT-1080 fibrosarcoma cells under treatment conditions, revealing new potential bioactivities of Annona muricata extracts. Our results reveal the complete sets of deregulated proteins after treatment with aqueous and DMSO extracts from Annona muricata leaves. Functional enrichment analysis of proteomic data suggests deregulation of cell cycle and iron metabolism, which are experimentally validated in vitro. Additional experimental data reveal that DMSO extracts protect HT-1080 fibrosarcoma cells and HMEC-1 endothelial cells from ferroptosis. Data from our proteomic study are available via ProteomeXchange with identifier PXD042354.
Collapse
Affiliation(s)
- Ana Dácil Marrero
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.); (C.C.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Ana R. Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.); (C.C.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.); (C.C.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.); (C.C.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Casimiro Cárdenas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.); (C.C.)
- Research Support Central Services (SCAI), University of Málaga, E-29071 Málaga, Spain
| |
Collapse
|
16
|
Shi J, Yang N, Han M, Qiu C. Emerging roles of ferroptosis in glioma. Front Oncol 2022; 12:993316. [PMID: 36072803 PMCID: PMC9441765 DOI: 10.3389/fonc.2022.993316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Glioma is the most common primary malignant tumor in the central nervous system, and directly affects the quality of life and cognitive function of patients. Ferroptosis, is a new form of regulated cell death characterized by iron-dependent lipid peroxidation. Ferroptosis is mainly due to redox imbalance and involves multiple intracellular biology processes, such as iron metabolism, lipid metabolism, and antioxidants synthesis. Induction of ferroptosis could be a new target for glioma treatment, and ferroptosis-related processes are associated with chemoresistance and radioresistance in glioma. In the present review, we provide the characteristics, key regulators and pathways of ferroptosis and the crosstalk between ferroptosis and other programmed cell death in glioma, we also proposed the application and prospect of ferroptosis in the treatment of glioma.
Collapse
Affiliation(s)
- Jiaqi Shi
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Qiu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chen Qiu,
| |
Collapse
|
17
|
Zhang C, Liu N. Ferroptosis, necroptosis, and pyroptosis in the occurrence and development of ovarian cancer. Front Immunol 2022; 13:920059. [PMID: 35958626 PMCID: PMC9361070 DOI: 10.3389/fimmu.2022.920059] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common malignancies that causes death in women and is a heterogeneous disease with complex molecular and genetic changes. Because of the relatively high recurrence rate of OC, it is crucial to understand the associated mechanisms of drug resistance and to discover potential target for rational targeted therapy. Cell death is a genetically determined process. Active and orderly cell death is prevalent during the development of living organisms and plays a critical role in regulating life homeostasis. Ferroptosis, a novel type of cell death discovered in recent years, is distinct from apoptosis and necrosis and is mainly caused by the imbalance between the production and degradation of intracellular lipid reactive oxygen species triggered by increased iron content. Necroptosis is a regulated non-cysteine protease–dependent programmed cell necrosis, morphologically exhibiting the same features as necrosis and occurring via a unique mechanism of programmed cell death different from the apoptotic signaling pathway. Pyroptosis is a form of programmed cell death that is characterized by the formation of membrane pores and subsequent cell lysis as well as release of pro-inflammatory cell contents mediated by the abscisin family. Studies have shown that ferroptosis, necroptosis, and pyroptosis are involved in the development and progression of a variety of diseases, including tumors. In this review, we summarized the recent advances in ferroptosis, necroptosis, and pyroptosis in the occurrence, development, and therapeutic potential of OC.
Collapse
|