1
|
Zhang J, Lv J, Qin J, Zhang M, He X, Ma B, Wan Y, Gao Y, Wang M, Hong Z. Unraveling the mysteries of early embryonic arrest: genetic factors and molecular mechanisms. J Assist Reprod Genet 2024; 41:3301-3316. [PMID: 39325344 PMCID: PMC11706821 DOI: 10.1007/s10815-024-03259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Early embryonic arrest (EEA) is a critical impediment in assisted reproductive technology (ART), affecting 40% of infertile patients by halting the development of early embryos from the zygote to blastocyst stage, resulting in a lack of viable embryos for successful pregnancy. Despite its prevalence, the molecular mechanism underlying EEA remains elusive. This review synthesizes the latest research on the genetic and molecular factors contributing to EEA, with a focus on maternal, paternal, and embryonic factors. Maternal factors such as irregularities in follicular development and endometrial environment, along with mutations in genes like NLRP5, PADI6, KPNA7, IGF2, and TUBB8, have been implicated in EEA. Specifically, PATL2 mutations are hypothesized to disrupt the maternal-zygotic transition, impairing embryo development. Paternal contributions to EEA are linked to chromosomal variations, epigenetic modifications, and mutations in genes such as CFAP69, ACTL7A, and M1AP, which interfere with sperm development and lead to infertility. Aneuploidy may disrupt spindle assembly checkpoints and pathways including Wnt, MAPK, and Hippo signaling, thereby contributing to EEA. Additionally, key genes involved in embryonic genome activation-such as ZSCAN4, DUXB, DUXA, NANOGNB, DPPA4, GATA6, ARGFX, RBP7, and KLF5-alongside functional disruptions in epigenetic modifications, mitochondrial DNA, and small non-coding RNAs, play critical roles in the onset of EEA. This review provides a comprehensive understanding of the genetic and molecular underpinnings of EEA, offering a theoretical foundation for the diagnosis and potential therapeutic strategies aimed at improving pregnancy outcomes.
Collapse
Affiliation(s)
- Jinyi Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jing Lv
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Juling Qin
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Xuanyi He
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Binyu Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yingjing Wan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ying Gao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
2
|
Williams JPC, Mouilleron S, Trapero RH, Bertran MT, Marsh JA, Walport LJ. Structural insight into the function of human peptidyl arginine deiminase 6. Comput Struct Biotechnol J 2024; 23:3258-3269. [PMID: 39286527 PMCID: PMC11402830 DOI: 10.1016/j.csbj.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Peptidyl arginine deiminase 6 (PADI6 or PAD6) is vital for early embryonic development in mice and humans, yet its function remains elusive. PADI6 is less conserved than other PADIs and it is currently unknown whether it has a catalytic function. Here we show that human PADI6 dimerises like hPADIs 2-4, however, does not bind Ca2+ and is inactive in in vitro assays against standard PADI substrates. By determining the crystal structure of hPADI6, we show that hPADI6 is structured in the absence of Ca2+ where hPADI2 and hPADI4 are not, and the Ca-binding sites are not conserved. Moreover, we show that whilst the key catalytic aspartic acid and histidine residues are structurally conserved, the cysteine is displaced far from the active site centre and the hPADI6 active site pocket appears closed through a unique evolved mechanism in hPADI6, not present in the other PADIs. Taken together, these findings provide insight into how the function of hPADI6 may differ from the other PADIs based on its structure and provides a resource for characterising the damaging effect of clinically significant PADI6 variants.
Collapse
Affiliation(s)
- Jack P C Williams
- Department of Chemistry, Imperial College London, London, United Kingdom
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Rolando Hernandez Trapero
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - M Teresa Bertran
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Louise J Walport
- Department of Chemistry, Imperial College London, London, United Kingdom
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
3
|
Slim R. Genetics and Genomics of Gestational Trophoblastic Disease. Hematol Oncol Clin North Am 2024; 38:1219-1232. [PMID: 39322462 DOI: 10.1016/j.hoc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This article focuses on hydatidiform mole (HM), which is the most common form of gestational trophoblastic disease and the most studied at the genomic and genetic levels. We summarize current laboratory methods to diagnose HM, discuss their limitations and advantages, and share the lessons we have learned. We also provide an overview of the history of recurrent HM, their known genetic etiologies, and the mechanisms of their formation.
Collapse
Affiliation(s)
- Rima Slim
- Department of Human Genetics, McGill University Health Centre Research Institute, 1001 Decarie Boulevard, EM0.3210, Montreal, Quebec H4A3J1, Canada.
| |
Collapse
|
4
|
Zhou J, Mao R, Gao L, Wang M, Long R, Wang X, Li Z, Jin L, Zhu L. Novel variants in PADI6 genes cause female infertility due to early embryo arrest. J Assist Reprod Genet 2024; 41:3327-3336. [PMID: 39644447 PMCID: PMC11707103 DOI: 10.1007/s10815-024-03332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024] Open
Abstract
PURPOSE Early embryo arrest is characterized by premature termination of development in preimplantation embryos. Human subcortical maternal complex (SCMC) is a protein complex that is specifically expressed in mammalian oocytes and early embryos and is essential for embryonic cell division. Peptidyl arginine deiminase 6 (PADI6) is proven to be a member of SCMC. Variants in the PADI6 gene have been shown to induce early embryo arrest. In this study, we performed genetic analysis in patients with female infertility due to early embryo arrest to identify the disease-causing gene variants. METHODS Whole-exome sequencing and Sanger sequencing were used to identify the variants in the patients and their families. Western blotting and immunofluorescence staining were used to check the effects of the variants on expression and function of PADI6. RESULTS We identified a novel homozygous variant (c.358A > C [p.Thr120Pro]) and novel compound-heterozygous variants (c.2044C > T [p.Arg682Trp] and c.707dupT [p.Leu237Alafs*24]) in PADI6 in two infertile individuals with early embryo arrest. We found that these variants resulted in a decrease in the expression level of PADI6, which may lead to abnormal protein function. Immunofluorescence staining also suggested that these variants affected the expression of PADI6. CONCLUSION Our study expands the spectrum of genetic defects in female early embryo arrest and further supports the causality between PADI6 variants and female infertility.
Collapse
Affiliation(s)
- Juepu Zhou
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Ruolin Mao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Limin Gao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Rui Long
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Xiangfei Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
5
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024; 41:3261-3286. [PMID: 39320554 PMCID: PMC11707141 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
6
|
Xia L, Huang J, Che Q, Zhang J, Zhang Z, Shen Y, Wang D, Zhong Y, Liu S, Du J. A heterozygous SPRY4 variant identified in female infertility characterized by reduced oocyte potential and early embryonic arrest. Hum Reprod 2024; 39:2618-2629. [PMID: 39348320 DOI: 10.1093/humrep/deae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/20/2024] [Indexed: 10/02/2024] Open
Abstract
STUDY QUESTION Can novel genetic factors contributing to early embryonic arrest in infertile patients be identified, along with the underlying mechanisms of the pathogenic variant? SUMMARY ANSWER We identified a heterozygous variant in the SPRY4 (sprouty RTK signaling antagonist 4) in infertile patients and conducted in vitro and in vivo studies to investigate the effects of the variant/deletion, highlighting its critical role in female reproductive health. WHAT IS KNOWN ALREADY SPRY4 acts as a negative regulator of receptor tyrosine kinases (RTKs) and functions as a tumor suppressor. Its abnormal expression can lead to recurrent miscarriage by affecting trophoblast function. In mice, Spry4 knockout (KO) leads to craniofacial anomalies and growth defects. A human study links the SPRY4 variant to a male patient with isolated hypogonadotropic hypogonadism (IHH), hypothetically impacting gonadotropin-releasing hormone (GnRH) neurons, and causing reproductive dysfunctions. SPRY4 is thus potentially integral in regulating endocrine homeostasis and reproductive function. To date, no study has reported SPRY4 variants associated with female fertility, and a causal relationship has not been established with functional evidence. STUDY DESIGN, SIZE, DURATION Whole-exome sequencing (WES) was performed in 392 infertile women who suffered from primary infertility of unknown reason, and the heterozygous SPRY4 variant were identified in one independent family. The infertile patients presenting were recruited from July 2017 to November 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS Women diagnosed with primary infertility were recruited from the Reproduction Center of Zhongshan Hospital, Fudan University. Genomic DNA was extracted from peripheral blood for WES analysis. The SPRY4 variant were identified through WES, in silico analysis, and variant screening. All variants were confirmed by Sanger sequencing. The effects of the variants were investigated in human embryonic kidney (HEK) 293T (HEK293T) cells via western blotting, and in mouse oocytes and embryos through complementary RNA (cRNA) injection, RNA sequencing, fluorescence, absorbance, and RT-qPCR assays. Gene function was further examined in Spry4 KO mice via histology, western blotting, ELISA, and RT-qPCR assays. MAIN RESULTS AND THE ROLE OF CHANCE We identified a missense heterozygous pathogenic variant in SPRY4 (GRCh38, GenBank: NM_030964.5, c.157C>T p.(Arg53Trp), rs200531302) that reduces SPRY4 protein levels in HEK293T cells and disrupts the redox system and mitochondrial function in mouse oocyte, and perturbs developmental potential in mouse embryos. These phenotypes could be partially reversed by the exogenous addition of Nrf1 cRNA. Additionally, Spry4-/- mice exhibit ovarian oxidative stress and decreased ovarian function. LIMITATIONS, REASONS FOR CAUTION Due to the limited WES data and population, we identified only one family with a SPRY4 mutation. The deeper mechanism and therapeutic strategy should be further investigated through mutant mice and recovery experiment. WIDER IMPLICATIONS OF THE FINDINGS Our study has identified a pathogenic variant in SPRY4 associated with early embryonic arrest in humans. These findings enhance our understanding of the role of SPRY4 in early embryonic development and present a new genetic marker for female infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (82071643 and 82171655) and Natural Science Foundation of Shanghai (22ZR1456200). None of the authors have any competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Lingjin Xia
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai, PR China
| | - Jiami Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai, PR China
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Qi Che
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jian Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai, PR China
| | - Zhaofeng Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai, PR China
| | - Yupei Shen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai, PR China
| | - Difei Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai, PR China
| | - Yushun Zhong
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai, PR China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jing Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai, PR China
| |
Collapse
|
7
|
Rui X, Zhang X, Jia X, Han J, Wang C, Cao Q, Zhong O, Ding J, Zhao C, Zhang J, Ling X, Li H, Ma X, Meng Q, Huo R. Variants in NLRP2 and ZFP36L2, non-core components of the human subcortical maternal complex, cause female infertility with embryonic development arrest. Mol Hum Reprod 2024; 30:gaae031. [PMID: 39178021 DOI: 10.1093/molehr/gaae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
The subcortical maternal complex (SCMC), which is vital in oocyte maturation and embryogenesis, consists of core proteins (NLRP5, TLE6, OOEP), non-core proteins (PADI6, KHDC3L, NLRP2, NLRP7), and other unknown proteins that are encoded by maternal effect genes. Some variants of SCMC genes have been linked to female infertility characterized by embryonic development arrest. However, so far, the candidate non-core SCMC components associated with embryonic development need further exploration and the pathogenic variants that have been identified are still limited. In this study, we discovered two novel variants [p.(Ala131Val) and p.(Met326Val)] of NLRP2 in patients with primary infertility displaying embryonic development arrest from large families. In vitro studies using 293T cells and mouse oocytes, respectively, showed that these variants significantly decreased protein expression and caused the phenotype of embryonic development arrest. Additionally, we combined the 'DevOmics' database with the whole exome sequence data of our cohort and screened out a new candidate non-core SCMC gene ZFP36L2. Its variants [p.(Ala241Pro) and p.(Pro291dup)] were found to be responsible for embryonic development arrest. Co-immunoprecipitation experiments in 293T cells, used to demonstrate the interaction between proteins, verified that ZFP36L2 is one of the human SCMC components, and microinjection of ZFP36L2 complementary RNA variants into mouse oocytes affected embryonic development. Furthermore, the ZFP36L2 variants were associated with disrupted stability of its target mRNAs, which resulted in aberrant H3K4me3 and H3K9me3 levels. These disruptions decreased oocyte quality and further developmental potential. Overall, this is the first report of ZFP36L2 as a non-core component of the human SCMC and we found four novel pathogenic variants in the NLRP2 and ZFP36L2 genes in 4 of 161 patients that caused human embryonic development arrest. These findings contribute to the genetic diagnosis of female infertility and provide new insights into the physiological function of SCMC in female reproduction.
Collapse
Affiliation(s)
- Ximan Rui
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiaolan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xinru Jia
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Han
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Congjing Wang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Qiqi Cao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Ou Zhong
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jie Ding
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Chun Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Junqiang Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hong Li
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingxia Meng
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ran Huo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou, Nanjing Medical University, Suzhou, China
| |
Collapse
|
8
|
Wei Y, Wang J, Qu R, Zhang W, Tan Y, Sha Y, Li L, Yin T. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum Reprod Update 2024; 30:48-80. [PMID: 37758324 DOI: 10.1093/humupd/dmad026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Infertility and pregnancy loss are longstanding problems. Successful fertilization and high-quality embryos are prerequisites for an ongoing pregnancy. Studies have proven that every stage in the human reproductive process is regulated by multiple genes and any problem, at any step, may lead to fertilization failure (FF) or early embryonic arrest (EEA). Doctors can diagnose the pathogenic factors involved in FF and EEA by using genetic methods. With the progress in the development of new genetic technologies, such as single-cell RNA analysis and whole-exome sequencing, a new approach has opened up for us to directly study human germ cells and reproductive development. These findings will help us to identify the unique mechanism(s) that leads to FF and EEA in order to find potential treatments. OBJECTIVE AND RATIONALE The goal of this review is to compile current genetic knowledge related to FF and EEA, clarifying the mechanisms involved and providing clues for clinical diagnosis and treatment. SEARCH METHODS PubMed was used to search for relevant research articles and reviews, primarily focusing on English-language publications from January 1978 to June 2023. The search terms included fertilization failure, early embryonic arrest, genetic, epigenetic, whole-exome sequencing, DNA methylation, chromosome, non-coding RNA, and other related keywords. Additional studies were identified by searching reference lists. This review primarily focuses on research conducted in humans. However, it also incorporates relevant data from animal models when applicable. The results were presented descriptively, and individual study quality was not assessed. OUTCOMES A total of 233 relevant articles were included in the final review, from 3925 records identified initially. The review provides an overview of genetic factors and mechanisms involved in the human reproductive process. The genetic mutations and other genetic mechanisms of FF and EEA were systematically reviewed, for example, globozoospermia, oocyte activation failure, maternal effect gene mutations, zygotic genome activation abnormalities, chromosome abnormalities, and epigenetic abnormalities. Additionally, the review summarizes progress in treatments for different gene defects, offering new insights for clinical diagnosis and treatment. WIDER IMPLICATIONS The information provided in this review will facilitate the development of more accurate molecular screening tools for diagnosing infertility using genetic markers and networks in human reproductive development. The findings will also help guide clinical practice by identifying appropriate interventions based on specific gene mutations. For example, when an individual has obvious gene mutations related to FF, ICSI is recommended instead of IVF. However, in the case of genetic defects such as phospholipase C zeta1 (PLCZ1), actin-like7A (ACTL7A), actin-like 9 (ACTL9), and IQ motif-containing N (IQCN), ICSI may also fail to fertilize. We can consider artificial oocyte activation technology with ICSI to improve fertilization rate and reduce monetary and time costs. In the future, fertility is expected to be improved or restored by interfering with or supplementing the relevant genes.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Tan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Ozturk S. Genetic variants underlying developmental arrests in human preimplantation embryos. Mol Hum Reprod 2023; 29:gaad024. [PMID: 37335858 DOI: 10.1093/molehr/gaad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Developmental arrest in preimplantation embryos is one of the major causes of assisted reproduction failure. It is briefly defined as a delay or a failure of embryonic development in producing viable embryos during ART cycles. Permanent or partial developmental arrest can be observed in the human embryos from one-cell to blastocyst stages. These arrests mainly arise from different molecular biological defects, including epigenetic disturbances, ART processes, and genetic variants. Embryonic arrests were found to be associated with a number of variants in the genes playing key roles in embryonic genome activation, mitotic divisions, subcortical maternal complex formation, maternal mRNA clearance, repairing DNA damage, transcriptional, and translational controls. In this review, the biological impacts of these variants are comprehensively evaluated in the light of existing studies. The creation of diagnostic gene panels and potential ways of preventing developmental arrests to obtain competent embryos are also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
10
|
Sahin GN, Yildirim RM, Seli E. Embryonic arrest: causes and implications. Curr Opin Obstet Gynecol 2023; 35:184-192. [PMID: 37039141 DOI: 10.1097/gco.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
PURPOSE OF REVIEW Embryonic arrest is a key determinant of the number of euploid blastocysts obtained after IVF. Here, we review factors that are implicated in the developmental arrest of preimplantation embryos and their relevance for assisted reproduction outcomes. RECENT FINDINGS Among the treatment options available to infertile women, IVF is the one associated with most favorable outcomes. The cumulative pregnancy rates in women undergoing IVF are determined by aneuploidy rate (age), ovarian response to stimulation (ovarian reserve), and the rate of embryo developmental arrest. Mutations in maternal effect genes, especially those encoding for subcortical maternal complex, have been implicated in human embryo developmental arrest. In addition, perturbation of biological processes, such as mitochondrial unfolded protein response and long noncoding RNA regulatory pathways, may play a role. However, how each of these factors contributes to embryos' arrest in different cohorts and age groups has not been determined. SUMMARY Arrest of human embryos during preimplantation development is a common occurrence and is partly responsible for the limited number of euploid blastocysts obtained in assisted reproduction cycles. Although genetic and metabolic causes have been implicated, the mechanisms responsible for human embryo developmental arrest remain poorly characterized.
Collapse
Affiliation(s)
- Gizem N Sahin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Raziye M Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- IVIRMA New Jersey, Basking Ridge, New Jersey, USA
| |
Collapse
|
11
|
Zhang T, Liu P, Yao G, Zhang X, Cao C. A complex heterozygous mutation in PADI6 causes early embryo arrest: A case report. Front Genet 2023; 13:1104085. [PMID: 36704355 PMCID: PMC9871383 DOI: 10.3389/fgene.2022.1104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
Background: The PADI6 gene is a component of the subcortical maternal effect complex (SCMC). Mutations in the PADI6 gene, which was the first gene discovered to impact the activation process of the human embryonic genome, have been shown to induce early embryo arrest. Case: A 29-year-old lady with primary infertility underwent in vitro fertilization embryo transfer (IVF-ET) for tubal reasons, who had normal hormone levels and ovarian reserve. A Progestin-Primed Ovarian Stimulation (PPOS) protocol of Ovarian stimulation with IVF was performed. The total of Gonadotropin (Gn) stimulation with u-FSH was 2100 IU, which lasted for 10 days. When three follicles measuring less than 18 mm in diameter were seen, r-hCG 250 ug and triptorelin acetate 0.2 mg were injected to trigger oocyte maturation. Nineteen oocytes (including thirteen MII oocytes) were picked up 37 h after the trigger, and seven of these were normal fertilized. Unfortunately, these many embryos were stopped at the 1- or 2-cell stage, hence this infertile patient's IVF treatment won't result in an embryo transfer. Using whole-exome sequencing, a complex heterozygous mutation in PADI6 was discovered: c. 1247T>C [p.Ile416Thr] in exon 12 of PADI6, and c. 2009_2010del [p.Glu670GlyfsTer48] in exon 17 of PADI6. Conclusion: We found a complex heterozygous mutation in the PADI6 gene (c. 1247T>C; c. 2009_2010del) that caused embryos were arrested at the 1- or 2- cell stage. The discovery in this patient adds to the evidence showing the PADI6 gene mutation causes early embryo arrest in humans.
Collapse
|
12
|
Zhu C, Liu C, Chai Z. Role of the PADI family in inflammatory autoimmune diseases and cancers: A systematic review. Front Immunol 2023; 14:1115794. [PMID: 37020554 PMCID: PMC10067674 DOI: 10.3389/fimmu.2023.1115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
The peptidyl arginine deiminase (PADI) family is a calcium ion-dependent group of isozymes with sequence similarity that catalyze the citrullination of proteins. Histones can serve as the target substrate of PADI family isozymes, and therefore, the PADI family is involved in NETosis and the secretion of inflammatory cytokines. Thus, the PADI family is associated with the development of inflammatory autoimmune diseases and cancer, reproductive development, and other related diseases. In this review, we systematically discuss the role of the PADI family in the pathogenesis of various diseases based on studies from the past decade to provide a reference for future research.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| |
Collapse
|
13
|
Solovova OA, Chernykh VB. Genetics of Oocyte Maturation Defects and Early Embryo Development Arrest. Genes (Basel) 2022; 13:1920. [PMID: 36360157 PMCID: PMC9689903 DOI: 10.3390/genes13111920] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
Various pathogenic factors can lead to oogenesis failure and seriously affect both female reproductive health and fertility. Genetic factors play an important role in folliculogenesis and oocyte maturation but still need to be clarified. Oocyte maturation is a well-organized complex process, regulated by a large number of genes. Pathogenic variants in these genes as well as aneuploidy, defects in mitochondrial genome, and other genetic and epigenetic factors can result in unexplained infertility, early pregnancy loss, and recurrent failures of IVF/ICSI programs due to poor ovarian response to stimulation, oocyte maturation arrest, poor gamete quality, fertilization failure, or early embryonic developmental arrest. In this paper, we review the main genes, as well as provide a description of the defects in the mitochondrial genome, associated with female infertility.
Collapse
|
14
|
Fei CF, Zhou LQ. Gene mutations impede oocyte maturation, fertilization, and early embryonic development. Bioessays 2022; 44:e2200007. [PMID: 35900055 DOI: 10.1002/bies.202200007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Reproductive diseases are a long-standing problem and have become more common in the world. Currently, 15% of the world's population suffers from infertility, and half of them are women. Maturation of oocytes, successful fertilization, and high-quality embryos are prerequisites for pregnancy. With the development of assisted reproductive technology and advanced genetic assays, we have found that infertility in many young female patients is caused by mutations in various developmental regulators. These pathogenic factors may result in impediment of oocyte maturation, failure of fertilization or early embryonic development arrest. In this review, we categorize these clinically-identified, mutated genetic factors by their molecular characteristics: nuclear factors (PALT2, TRIP13, WEE2, TBPL2, REC114, MEI1 and CDC20), cytoplasmic factors (TLE6, PADI6, NLRP2/5, FBXO43, MOS and BTG4), a factor unique to primates (TUBB8), cell membrane factor (PANX1), and zona pellucida factors (ZP1-3). We compared discrepancies observed in phenotypes between human and mouse models to provide clues for clinical diagnosis and treatment of related reproductive diseases.
Collapse
Affiliation(s)
- Cai-Feng Fei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Chen Z, Zhang Z, Wang Z, Zhang Z, Wang Q, Pan Y. Heterozygosity and homozygosity regions affect reproductive success and the loss of reproduction: a case study with litter traits in pigs. Comput Struct Biotechnol J 2022; 20:4060-4071. [PMID: 35983229 PMCID: PMC9364102 DOI: 10.1016/j.csbj.2022.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/23/2022] Open
Abstract
Runs of heterozygosity (ROHet) and homozygosity (ROH) harbor useful information related to traits of interest. There is a lack of investigating the effect of ROHet and ROH on reproductive success and the loss of reproduction in mammals. Here, we detected and characterized the ROHet and ROH patterns in the genomes of Chinese indigenous pigs (i.e., Jinhua, Chun’an, Longyou Black, and Shengxian Spotted pigs), revealing the similar genetic characteristics of indigenous pigs. Later, we highlighted the underlying litter traits-related ROHet and ROH using association analysis with linear model in these four indigenous pig breeds. To pinpoint the promising candidate genes associated with litter traits, we further in-depth explore the selection patterns of other five pig breeds (i.e., Erhualian, Meishan, Minzhu, Rongchang, and Diqing pigs) with different levels of reproduction performance at the underlying litter traits-related ROHet and ROH using FST and genetic diversity ratio. Then, we identified a set of known and novel candidate genes associated with reproductive performance in pigs. For the novel candidate genes (i.e., CCDC91, SASH1, SAMD5, MACF1, MFSD2A, EPC2, and MBD5), we obtained public available datasets and performed multi-omics analyses integrating transcriptome-wide association studies and comparative single-cell RNA-seq analyses to uncover the roles of them in mammalian reproductive performance. The genes have not been widely reported to be fertility-related genes and can be complementally considered as prior biological information to modify genomic selections models that benefits pig genetic improvement of litter traits. Besides, our findings provide new insights into the function of ROHet and ROH in mammals.
Collapse
|