1
|
Dakal TC, Kumar A, Maurya PK. CircRNA-miRNA-mRNA interactome analysis in endometrial cancer. J Biomol Struct Dyn 2025; 43:1486-1497. [PMID: 38084757 DOI: 10.1080/07391102.2023.2291834] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2025]
Abstract
In recent years, exploring the potential of miRNAs as novel diagnostic, prognostic and diagnostic markers have gained much attention. In current study, we conducted an in-depth circRNA-miRNA-mRNA interactome to reveal significant molecular processes and biological pathways putatively associated with endometrial cancer (EC). Firstly, we retrieved two circRNAs from circad, hsa_circ_0002577 & hsa_circ_0109046, based on their association with the EC. Subsequently, we predicted miRNAs sponging sites in the two circRNAs and the potential target mRNAs of the predicted miRNAs. Sequestered miRNAs target a number of oncogenes (CBL, MET, KRAS), tumor suppressor (CFT R), receptor protein kinases & GT Pase (MET, KRAS, RAB1B), methyltransferases (SET D8), receptors associated factors (T RAF2, GRB2), growth factors (FGF20), autophagy (BECN1, AT G14), apoptotic regulators (BCL2), transcription factors (T Fs) (CREB1, RUNX1, RUNX2) and gene regulators (CCND1, HIF1A); and others, including some novel gene candidates (CREB1, FGF20, IFI27), that have never been implicated in EC earlier. The expression of hsa-miR-433-3p showed significant predictive relevance (Fold Change = 1.8, AUC = 0.736, Mann-Whitney test p-value = 6.1 e- 14) suggesting its predictive relevance in assessing patients' response to chemotherapy. The hsamiR- 188-3p targets autophagic and apoptotic regulators and its upregulation in endometriosis may be used as for the early stage diagnostic purpose. The hsa-miR-502-5p targets SET D8, T RAF2 and others and suggests additional genomic/epigenomic molecular targets for promising therapeutic interventions in EC. Predicted miRNAs target a number of mRNAs having varied functional impacts and offer an in-depth mechanistic insights for expatiating the biological and regulatory role in EC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Abhishek Kumar
- International Technology Park, Whitefield, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
2
|
Tang M, Song J, Zhang S, Shu X, Liu S, Ashrafizadeh M, Ertas YN, Zhou Y, Lei M. Innovative theranostic hydrogels for targeted gastrointestinal cancer treatment. J Transl Med 2024; 22:970. [PMID: 39465365 PMCID: PMC11514878 DOI: 10.1186/s12967-024-05749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Gastrointestinal tumors are the main causes of death among the patients. These tumors are mainly diagnosed in the advanced stages and their response to therapy is unfavorable. In spite of the development of conventional therapeutics including surgery, chemotherapy, radiotherapy and immunotherapy, the treatment of these tumors is still challenging. As a result, the new therapeutics based on (nano)biotechnology have been introduced. Hydrogels are polymeric 3D networks capable of absorbing water to swell with favorable biocompatibility. In spite of application of hydrogels in the treatment of different human diseases, their wide application in cancer therapy has been improved because of their potential in drug and gene delivery, boosting chemotherapy and immunotherapy as well as development of vaccines. The current review focuses on the role of hydrogels in the treatment of gastrointestinal tumors. Hydrogels provide delivery of drugs (both natural or synthetic compounds and their co-delivery) along with gene delivery. Along with delivery, hydrogels stimulate phototherapy (photothermal and photodynamic therapy) in the suppression of these tumors. Besides, the ability of hydrogels for the induction of immune-related cells such as dendritic cells can boost cancer immunotherapy. For more specific cancer therapy, the stimuli-responsive types of hydrogels including thermo- and pH-sensitive hydrogels along with their self-healing ability have improved the site specific drug delivery. Moreover, hydrogels are promising for diagnosis, circulating tumor cell isolation and detection of biomarkers in the gastrointestinal tumors, highlighting their importance in clinic. Hence, hydrogels are diagnostic and therapeutic tools for the gastrointestimal tumors.
Collapse
Affiliation(s)
- Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China
| | - Junzhou Song
- Department of Oncology, BoAo Evergrande International Hospital, Qionghai, 571400, Hainan Province, China
| | - Shuyi Zhang
- Department of Health Management Center, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Xiaolei Shu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, 38039, Kayseri, Türkiye
- Department of Technical Sciences, Western Caspian University, AZ1001, Baku, Azerbaijan
| | - Ya Zhou
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China.
| | - Ming Lei
- Department of Nuclear Medicine, Chongqing University FuLing Hospital, Chongqing University, No. 2 Gaosuntang Road, Chongqing, China.
| |
Collapse
|
3
|
Zhang L, Gao H, Li X, Yu F, Li P. The important regulatory roles of circRNA‑encoded proteins or peptides in cancer pathogenesis (Review). Int J Oncol 2024; 64:19. [PMID: 38186313 PMCID: PMC10783939 DOI: 10.3892/ijo.2023.5607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Circular RNAs (circRNAs) represent a class of RNA molecules characterized by their covalently closed structures. There are three types of circRNAs, namely exonic circRNAs, exon‑intron circRNAs and circular intronic RNAs. To date, four distinct mechanisms have been unveiled through which circRNAs exert their functional influence, including serving as microRNA (miRNA) sponges, interacting with RNA binding proteins (RBPs), modulating parental gene transcription and acting as templates for translation. Of note, among these mechanisms, the miRNA/RBP sponge function has been the most investigated one. Recent research has uncovered the presence of various proteins or peptides encoded by circRNA. CircRNAs are translated independent of the 5' cap and 3' polyA tail, which are typical elements for linear RNA translation. Some unique elements, such as internal ribosome entry sites and N‑methyladenosine modifications, facilitate the initiation of translation. These circRNA‑encoded proteins or peptides participate in diverse signalling pathways and act as important regulators in carcinogenesis by influencing cell proliferation, migration, apoptosis and other key processes. Consequently, circRNA‑encoded proteins or peptides have great potential as therapeutic targets for anticancer drugs. The present comprehensive review aimed to systematically summarize the current understanding of circRNA‑encoded proteins or peptides and to unveil their roles in carcinogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
4
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNAs in lung cancer: molecular mechanisms and clinical applications. Front Oncol 2023; 13:1256537. [PMID: 37746261 PMCID: PMC10514911 DOI: 10.3389/fonc.2023.1256537] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease with high malignant degree, rapid growth, and early metastasis. The clinical outcomes of LC patients are generally poor due to the insufficient elucidation of pathological mechanisms, low efficiency of detection and assessment methods, and lack of individualized therapeutic strategies. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA), are endogenous regulators that are widely involved in the modulation of almost all aspects of life activities, from organogenesis and aging to immunity and cancer. They commonly play vital roles in various biological processes by regulating gene expression via their interactions with DNA, RNA, or protein. An increasing amount of studies have demonstrated that ncRNAs are closely correlated with the initiation and development of LC. Their dysregulation promotes the progression of LC via distinct mechanisms, such as influencing protein activity, activating oncogenic signaling pathways, or altering specific gene expression. Furthermore, some ncRNAs present certain clinical values as biomarker candidates and therapeutic targets for LC patients. A complete understanding of their mechanisms in LC progression may be highly beneficial to developing ncRNA-based therapeutics for LC patients. This review mainly focuses on the intricate mechanisms of miRNA, lncRNA, and circRNA involved in LC progression and discuss their underlying applications in LC treatment.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Takashima Y, Komatsu S, Ohashi T, Kiuchi J, Nishibeppu K, Kamiya H, Arakawa H, Ishida R, Shimizu H, Arita T, Konishi H, Shiozaki A, Kubota T, Fujiwara H, Otsuji E. Plasma miR-1254 as a predictive biomarker of chemosensitivity and a target of nucleic acid therapy in esophageal cancer. Cancer Sci 2023; 114:3027-3040. [PMID: 37190912 PMCID: PMC10323105 DOI: 10.1111/cas.15830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
This study investigated novel tumor suppressor microRNAs (miRNAs) that decrease in plasma and predict chemosensitivity to neoadjuvant chemotherapy (NAC) for esophageal squamous cell carcinoma (ESCC) and revealed their usefulness as novel therapeutic agents. We selected four miRNA candidates (miR-323, 345, 409, and 1254) based on the microRNA microarray comparing pre-treatment plasma levels in ESCC patients with high and low histopathological responses to NAC and an NCBI database review. Among these miRNA candidates, miR-1254 was more highly elevated in pre-treatment plasma of ESCC patients with a high histopathological response than in those with a low histopathological response (P = 0.0021, area under the receiver-operating characteristic curve 0.7621). High plasma miR-1254 levels tended to correlate with the absence of venous invasion (P = 0.0710) and were an independent factor predicting a higher response to chemotherapy (P = 0.0022, odds ratio 7.86) and better prognosis (P = 0.0235, hazard ratio 0.23). Overexpressing miR-1254 in ESCC cells significantly enhanced chemosensitivity to cisplatin through the transcriptional regulation of ABCC1 in vitro. Moreover, increased plasma miR-1254 levels by subcutaneous injection significantly improved responses to cisplatin in mice. Plasma miR-1254 might be a useful biomarker for predicting responses to NAC, and the restoration of plasma miR-1254 levels might improve chemosensitivity in ESCC.
Collapse
Affiliation(s)
- Yusuke Takashima
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Shuhei Komatsu
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Takuma Ohashi
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Jun Kiuchi
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Keiji Nishibeppu
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hajime Kamiya
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroshi Arakawa
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Ryo Ishida
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroki Shimizu
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Tomohiro Arita
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hirotaka Konishi
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Atsushi Shiozaki
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Takeshi Kubota
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hitoshi Fujiwara
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Eigo Otsuji
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
6
|
ZHANG LEI, ZHANG YUAN, GAO HUIJUAN, LI XIN, LI PEIFENG. Underlying mechanisms and clinical potential of circRNAs in glioblastoma. Oncol Res 2023; 31:449-462. [PMID: 37415736 PMCID: PMC10319586 DOI: 10.32604/or.2023.029062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/14/2023] [Indexed: 07/08/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant form of glioma and is difficult to diagnose, leading to high mortality rates. Circular RNAs (circRNAs) are noncoding RNAs with a covalently closed loop structure. CircRNAs are involved in various pathological processes and have been revealed to be important regulators of GBM pathogenesis. CircRNAs exert their biological effects by 4 different mechanisms: serving as sponges of microRNAs (miRNAs), serving as sponges of RNA binding proteins (RBPs), modulating parental gene transcription, and encoding functional proteins. Among the 4 mechanisms, sponging miRNAs is predominant. Their good stability, broad distribution and high specificity make circRNAs promising biomarkers for GBM diagnosis. In this paper, we summarized the current understanding of the characteristics and action mechanisms of circRNAs, illustrated the underlying regulatory mechanisms of circRNAs in GBM progression and explored the possible diagnostic role of circRNAs in GBM.
Collapse
Affiliation(s)
- LEI ZHANG
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - YUAN ZHANG
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - HUIJUAN GAO
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - XIN LI
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - PEIFENG LI
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
7
|
Li J, Song Y, Cai H, Zhou B, Ma J. Roles of circRNA dysregulation in esophageal squamous cell carcinoma tumor microenvironment. Front Oncol 2023; 13:1153207. [PMID: 37384299 PMCID: PMC10299836 DOI: 10.3389/fonc.2023.1153207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most prevalent histological esophageal cancer characterized by advanced diagnosis, metastasis, resistance to treatment, and frequent recurrence. In recent years, numerous human disorders such as ESCC, have been linked to abnormal expression of circular RNAs (circRNAs), suggesting that they are fundamental to the intricate system of gene regulation that governs ESCC formation. The tumor microenvironment (TME), referring to the area surrounding the tumor cells, is composed of multiple components, including stromal cells, immune cells, the vascular system, extracellular matrix (ECM), and numerous signaling molecules. In this review, we briefly described the biological purposes and mechanisms of aberrant circRNA expression in the TME of ESCC, including the immune microenvironment, angiogenesis, epithelial-to-mesenchymal transition, hypoxia, metabolism, and radiotherapy resistance. As in-depth research into the processes of circRNAs in the TME of ESCC continues, circRNAs are promising therapeutic targets or delivery systems for cancer therapy and diagnostic and prognostic indicators for ESCC.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huihong Cai
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Zhou
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Zhang L, Zhang Y, Li X, Gao H, Chen X, Li P. CircRNA-miRNA-VEGFA: an important pathway to regulate cancer pathogenesis. Front Pharmacol 2023; 14:1049742. [PMID: 37234708 PMCID: PMC10206052 DOI: 10.3389/fphar.2023.1049742] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Cancers, especially malignant tumors, contribute to high global mortality rates, resulting in great economic burden to society. Many factors are associated with cancer pathogenesis, including vascular endothelial growth factor-A (VEGFA) and circular RNAs (circRNA). VEGFA is a pivotal regulator of vascular development such as angiogenesis, which is an important process in cancer development. CircRNAs have covalently closed structures, making them highly stable. CircRNAs are widely distributed and participate in many physiological and pathological processes, including modulating cancer pathogenesis. CircRNAs act as transcriptional regulators of parental genes, microRNA (miRNA)/RNA binding protein (RBP) sponges, protein templates. CircRNAs mainly function via binding to miRNAs. CircRNAs have been shown to influence different diseases such as coronary artery diseases and cancers by regulating VEGFA levels via binding to miRNAs. In this paper, we explored the origin and functional pathways of VEGFA, reviewed the current understanding of circRNA properties and action mechanisms, and summarized the role of circRNAs in regulating VEGFA during cancer pathogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | | | | | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Role of IL-6/STAT3 Axis in Resistance to Cisplatin in Gastric Cancers. Biomedicines 2023; 11:biomedicines11030694. [PMID: 36979673 PMCID: PMC10044743 DOI: 10.3390/biomedicines11030694] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gastric cancer, the second most common cause of death worldwide, is characterized by poor prognosis and low responsiveness to chemotherapy. Indeed, multidrug resistance, based mainly on cellular and molecular factors, remains one of the most limiting factors of the current approach to gastric cancer (GC) therapy. We employed a comprehensive gene expression analysis through data mining of publicly available databases to assess the role of the signal transducer and activator of transcription 3 (STAT3) in gastric cancer drug efficiency. It has been proposed that gastric cancer cells are less sensitive to these drugs because they develop resistance to these agents through activating alternative signalling pathways responsible for overcoming pharmacological inhibition. Our study evaluated the hypothesis that activating STAT3 signalling in response to cisplatin reduces the reaction to the drug. Consistent with this hypothesis, inhibition of interleukin 6 (IL-6)/STAT3 in combination therapy with cisplatin prevented both STAT3 activation and more lethality than induction by a single agent. The data suggest that the IL-6/STAT3 axis block associated with cisplatin treatment may represent a strategy to overcome resistance.
Collapse
|
10
|
Kang F, Yan Y, Liu Y, Liang Q, Xu Z, Zhu W, Thakur A. Unraveling the significance of exosomal circRNAs in cancer therapeutic resistance. Front Pharmacol 2023; 14:1093175. [PMID: 36874026 PMCID: PMC9974836 DOI: 10.3389/fphar.2023.1093175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Exosomes are nanoscale extracellular vesicles secreted by a variety of cells, affecting the physiological and pathological homeostasis. They carry various cargoes including proteins, lipids, DNA, and RNA and have emerged as critical mediators of intercellular communication. During cell-cell communication, they can internalize either by autologous or heterologous recipient cells, which activate different signaling pathways, facilitating malignant progression of cancer. Among different types of cargoes in exosomes, the endogenous non-coding RNAs, such as circular RNAs (or circRNAs), have gained tremendous attention for their high stability and concentration, playing promising functional roles in cancer chemotherapeutic response by regulating the targeted gene expression. In this review, we primarily described the emerging evidence demonstrating the important roles of circular RNAs derived from exosomes in the regulation of cancer-associated signaling pathways that were involved in cancer research and therapeutic interventions. Additionally, the relevant profiles of exosomal circRNAs and their biological implications have been discussed, which is under investigation for their potential effect on the control of cancer therapeutic resistance.
Collapse
Affiliation(s)
- Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
CircLMTK2 Silencing Attenuates Gemcitabine Resistance in Pancreatic Cancer by Sponging miR-485-5p and to Target PAK1. JOURNAL OF ONCOLOGY 2022; 2022:1911592. [PMID: 36059806 PMCID: PMC9433304 DOI: 10.1155/2022/1911592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic cancer (PC) has a high degree of malignancy and poor prognosis, and countless patients have distant metastasis when diagnosed. Gemcitabine (GEM) chemotherapy is one of the main ways of treatment. However, PC cells have been displayed chemoresistance to GEM during treatment. Circular RNAs (circRNAs) have been demonstrated to be the most popular diagnostic and prognostic biomarkers in PC with GEM resistance. Here, we assessed the potential of circLMTK2 in the GEM resistance of PC cells. Functional assays were implemented to measure the impacts of circLMTK2 on the proliferation, migration/invasion, and apoptosis of GEM-resistant PC cells. Bioinformatics analysis and mechanical experiments displayed the underlying mechanism of circLMTK2 in GEM-resistant PC cells. We found that circLMTK2 was upregulated in PC and GEM-resistant PC tissues and cells. CircLMTK2 knockdown suppressed proliferation, invasion, migration, and enhanced apoptosis in GEM-resistant PC cells. Moreover, circLMTK2 silencing could decrease GEM resistance-associated tumor size in vivo. In terms of mechanism, circLMTK2 served as a sponge for miR-485-5p, and miR-485-5p bound to p21 (RAC1) activated kinase 1 (PAK1), which were clarified via the dual-luciferase assay in PC cell lines. We confirmed that circLMTK2 knockdown attenuated GEM-resistant PC cells by regulating PAK1 via miR-485-5p. Our study demonstrated that circLMTK2 may be a novel diagnostic and prognostic biomarker in GEM-resistant PC cells.
Collapse
|
12
|
Han Z, Chen H, Guo Z, Shen J, Luo W, Xie F, Wan Y, Wang S, Li J, He J. Circular RNAs and Their Role in Exosomes. Front Oncol 2022; 12:848341. [PMID: 35574355 PMCID: PMC9096127 DOI: 10.3389/fonc.2022.848341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
As a novel class of endogenous non-coding RNAs discovered in recent years, circular RNAs (circRNAs) are highly conserved and stable covalently closed ring structures with no 5'-end cap or 3'-end poly(A) tail. CircRNAs are formed by reverse splicing, mainly by means of a noose structure or intron complementary pairing. Exosomes are tiny discoid vesicles with a diameter of 40-100 nm that are secreted by cells under physiological and pathological conditions. Exosomes play an important role in cell-cell communication by carrying DNA, microRNAs, mRNAs, proteins and circRNAs. In this review, we summarize the biological functions of circRNAs and exosomes, and further reveal the potential roles of exosomal circRNAs in different diseases, providing a scientific basis for the diagnosis, treatment, and prognosis of a wide variety of diseases.
Collapse
Affiliation(s)
- Zeping Han
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Huafang Chen
- Department of Laboratory Medicine, Leizhou Center for Disease Control and Prevention, Leizhou, China
| | - Zhonghui Guo
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yu Wan
- Department of Gastroenterology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Shengbo Wang
- Department of Gastroenterology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jianhao Li
- Department of Cardiology, Central Hospital of Panyu District, Guangzhou, China
| | - Jinhua He
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
13
|
Orzetti S, Tommasi F, Bertola A, Bortolin G, Caccin E, Cecco S, Ferrarin E, Giacomin E, Baldo P. Genetic Therapy and Molecular Targeted Therapy in Oncology: Safety, Pharmacovigilance, and Perspectives for Research and Clinical Practice. Int J Mol Sci 2022; 23:ijms23063012. [PMID: 35328435 PMCID: PMC8951339 DOI: 10.3390/ijms23063012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
The impressive advances in the knowledge of biomarkers and molecular targets has enabled significant progress in drug therapy for crucial diseases such as cancer. Specific areas of pharmacology have contributed to these therapeutic outcomes—mainly targeted therapy, immunomodulatory therapy, and gene therapy. This review focuses on the pharmacological profiles of these therapeutic classes and intends, on the one hand, to provide a systematic definition and, on the other, to highlight some aspects related to pharmacovigilance, namely the monitoring of safety and the identification of potential toxicities and adverse drug reactions. Although clinicians often consider pharmacovigilance a non-priority area, it highlights the risk/benefit ratio, an essential factor, especially for these advanced therapies, which represent the most innovative and promising horizon in oncology.
Collapse
Affiliation(s)
- Sabrina Orzetti
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
- Department of Hospital Pharmacy, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
| | - Federica Tommasi
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Antonella Bertola
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Giorgia Bortolin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Elisabetta Caccin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Sara Cecco
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Emanuela Ferrarin
- Scientific and Patients Library of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy;
| | - Elisa Giacomin
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
| | - Paolo Baldo
- Hospital Pharmacy Unit of the “Centro di Riferimento Oncologico (CRO) di Aviano IRCCS”, Via F. Gallini, 33081 Aviano, Italy; (S.O.); (F.T.); (A.B.); (G.B.); (E.C.); (S.C.); (E.G.)
- Correspondence: ; Tel.: +39-0434-659221
| |
Collapse
|