1
|
Zelikman S, Dudkevich R, Korenfeld-Tzemach H, Shmidov E, Levi-Ferber M, Shoshani S, Ben-Aroya S, Henis-Korenblit S, Banin E. PemB, a type III secretion effector in Pseudomonas aeruginosa, affects Caenorhabditis elegans life span. Heliyon 2024; 10:e29751. [PMID: 38681583 PMCID: PMC11053225 DOI: 10.1016/j.heliyon.2024.e29751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Pseudomonas aeruginosa is one of the leading nosocomial opportunistic pathogens causing acute and chronic infections. Among its main virulent factors is the Type III secretion system (T3SS) which enhances disease severity by delivering effectors to the host in a highly regulated manner. Despite its importance for virulence, only six T3SS-dependent effectors have been discovered so far. Previously, we identified two new potential effectors using a machine-learning algorithm approach. Here we demonstrate that one of these effectors, PemB, is indeed virulent. Using a live Caenorhabditis elegans infection model, we demonstrate this effector damages the integrity of the intestine barrier leading to the death of the host. Implementing a high-throughput assay using Saccharomyces cerevisiae, we identified several candidate proteins that interact with PemB. One of them, EFT1, has an ortholog in C. elegans (eef-2) and is also an essential gene and a well-known target utilized by different pathogens to induce toxicity to the worm. Accordingly, we found that by silencing the eef-2 gene in C. elegans, PemB could no longer induce its toxic effect. The current study further uncovers the complex machinery assisting P. aeruginosa virulence and may provide novel insight how to manage infection associated with this hard-to-treat pathogen.
Collapse
Affiliation(s)
- Shira Zelikman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
- The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
| | - Reut Dudkevich
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
| | - Hadar Korenfeld-Tzemach
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
- The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
| | - Esther Shmidov
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
- The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
| | - Mor Levi-Ferber
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
| | - Sivan Shoshani
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
- The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
| | - Shay Ben-Aroya
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
- The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
| | - Sivan Henis-Korenblit
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
| | - Ehud Banin
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
- The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb, 5290002, Ramat Gan, Israel
| |
Collapse
|
2
|
Yarychkivska O, Sharmin R, Elkhalil A, Ghose P. Apoptosis and beyond: A new era for programmed cell death in Caenorhabditis elegans. Semin Cell Dev Biol 2024; 154:14-22. [PMID: 36792437 DOI: 10.1016/j.semcdb.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Programmed cell death (PCD) is crucial for normal development and homeostasis. Our first insights into the genetic regulation of apoptotic cell death came from in vivo studies in the powerful genetic model system of C. elegans. More recently, novel developmental cell death programs occurring both embryonically and post-embryonically, and sex-specifically, have been elucidated. Recent studies in the apoptotic setting have also shed new light on the intricacies of phagocytosis in particular. This review provides a brief historical perspective of the origins of PCD studies in C. elegans, followed by a more detailed description of non-canonical apoptotic and non-apoptotic death programs. We conclude by posing open questions and commenting on our outlook on the future of PCD studies in C. elegans, highlighting the importance of advanced imaging tools and the continued leveraging of C. elegans genetics both with classical and modern cutting-edge approaches.
Collapse
Affiliation(s)
| | | | | | - Piya Ghose
- The University of Texas at Arlington, USA.
| |
Collapse
|
3
|
Keeping Cell Death Alive: An Introduction into the French Cell Death Research Network. Biomolecules 2022; 12:biom12070901. [PMID: 35883457 PMCID: PMC9313292 DOI: 10.3390/biom12070901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.
Collapse
|