1
|
Tran TH, Lukmanto D, Chen M, Strauß O, Yamashita T, Ohneda O, Fukuda S. Characterization and neurogenic responses of primary and immortalized Müller glia. Front Cell Dev Biol 2025; 13:1513163. [PMID: 40417181 PMCID: PMC12098385 DOI: 10.3389/fcell.2025.1513163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/23/2025] [Indexed: 05/27/2025] Open
Abstract
Primary Müller glia (MG) have been reported to exhibit a neurogenic capacity induced by small molecules. However, whether immortalized mouse MG cell lines exhibit neurogenic capacities similar to those of primary mouse MG remains unclear. In this study, we examined the morphology, proliferation rate, and marker profile of primary MG cells isolated from postnatal mouse pups with two immortalized mouse MG cell lines, QMMuC-1 and ImM10, in a standard growth medium. After chemical induction, we compared the morphology, markers, direct neuronal reprogramming efficiency, and axon length of these cell types in two culture media: Neurobasal and DMEM/F12. Our results showed that in standard growth medium, QMMuC-1 and ImM10 cells displayed similar morphology and marker profiles as primary MG cells, with the only differences observed in nestin expression. However, QMMuC-1 and ImM10 cells exhibited much higher proliferation rates than the primary MG cells. Following chemical treatment in both Neurobasal and DMEM/F12 media, a subset of primary MG, QMMuC-1, and ImM10 cells was induced to differentiate into immature neuron-like cells by day 7. While primary MG cells showed similar neuronal reprogramming efficiency and axon length extension in both media, QMMuC-1 and ImM10 cells displayed variations between the two culture media. Moreover, some of the induced neuronal cells derived from primary MG cells expressed HuC/D and Calbindin markers, whereas none of the cells derived from QMMuC-1 and ImM10 cells expressed these markers. Subsequent observations revealed that induced immature neuron-like cells derived from primary MG cells in both types of media and those derived from ImM10 cells cultured in DMEM/F12 survived until day 14. Taken together, our findings suggest that the two immortalized cell lines, QMMuC-1 and ImM10, exhibited neurogenic capacities similar to those of primary MG cells to some extent but did not fully recapitulate all their characteristics. Therefore, careful consideration should be given to culture conditions and the validation of key results when using immortalized cells as a substitute for primary MG cells.
Collapse
Affiliation(s)
- Thi-Hang Tran
- Laboratory of Advanced Vision Science, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory of Regenerative Medicine and Stem Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Donny Lukmanto
- Laboratory of Advanced Vision Science, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Toshiharu Yamashita
- Laboratory of Advanced Vision Science, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory of Regenerative Medicine and Stem Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinichi Fukuda
- Laboratory of Advanced Vision Science, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
2
|
Yin Z, Kang J, Xu H, Huo S, Xu H. Recent progress of principal techniques used in the study of Müller glia reprogramming in mice. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:30. [PMID: 39663301 PMCID: PMC11635068 DOI: 10.1186/s13619-024-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
In zebrafish, Müller glia (MG) cells retain the ability to proliferate and de-differentiate into retinal progenitor-like cells, subsequently differentiating into retinal neurons that can replace those damaged or lost due to retinal injury. In contrast, the reprogramming potential of MG in mammals has been lost, with these cells typically responding to retinal damage through gliosis. Considerable efforts have been dedicated to achieving the reprogramming of MG cells in mammals. Notably, significant advancements have been achieved in reprogramming MG cells in mice employing various methodologies. At the same time, some inevitable challenges have hindered identifying accurate MG cell reprogramming rather than the illusion, let alone improving the reprogramming efficiency and maturity of daughter cells. Recently, several strategies, including lineage tracking, multi-omics techniques, and functional analysis, have been developed to investigate the MG reprogramming process in mice. This review summarizes both the advantages and limitations of these novel strategies for analyzing MG reprogramming in mice, offering insights into enhancing the reliability and efficiency of MG reprogramming.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Jiahui Kang
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Haoan Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shujia Huo
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| | - Haiwei Xu
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| |
Collapse
|
3
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023; 18:64. [PMID: 37735444 PMCID: PMC10514988 DOI: 10.1186/s13024-023-00655-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Erika A Aguzzi
- The Institute of Ophthalmology, University College London, London, England, UK
| | - Julie Cho
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael James Gilhooley
- The Institute of Ophthalmology, University College London, London, England, UK
- Moorfields Eye Hospital, London, England, UK
| | - Casey Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Alex L Kolodkin
- The Solomon H Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ahmara G Ross
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek Welsbie
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, CA, USA
| | - Donald J Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA.
| |
Collapse
|
4
|
Johnson TV, Calkins DJ, Fortune B, Goldberg JL, La Torre A, Lamba DA, Meyer JS, Reh TA, Wallace VA, Zack DJ, Baranov P. The importance of unambiguous cell origin determination in neuronal repopulation studies. iScience 2023; 26:106361. [PMID: 37009209 PMCID: PMC10060674 DOI: 10.1016/j.isci.2023.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Neuronal repopulation achieved through transplantation or transdifferentiation from endogenous sources holds tremendous potential for restoring function in chronic neurodegenerative disease or acute injury. Key to the evaluation of neuronal engraftment is the definitive discrimination of new or donor neurons from preexisting cells within the host tissue. Recent work has identified mechanisms by which genetically encoded donor cell reporters can be transferred to host neurons through intercellular material transfer. In addition, labeling transplanted and endogenously transdifferentiated neurons through viral vector transduction can yield misexpression in host cells in some circumstances. These issues can confound the tracking and evaluation of repopulated neurons in regenerative experimental paradigms. Using the retina as an example, we discuss common reasons for artifactual labeling of endogenous host neurons with donor cell reporters and suggest strategies to prevent erroneous conclusions based on misidentification of cell origin.
Collapse
Affiliation(s)
- Thomas V. Johnson
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J. Calkins
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Healthy, Portland, OR, USA
| | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anna La Torre
- Department of Cell Biology & Human Anatomy, University of California Davis, Davis, CA, USA
| | - Deepak A. Lamba
- Department of Ophthalmology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Jason S. Meyer
- Departments of Medical & Molecular Genetics, Ophthalmology (Glick Eye Institute), Pharmacology & Toxicology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Valerie A. Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Departments of Laboratory Medicine & Pathobiology, and Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Donald J. Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Petr Baranov
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Xie Y, Zhou J, Wang LL, Zhang CL, Chen B. New AAV tools fail to detect Neurod1-mediated neuronal conversion of Müller glia and astrocytes in vivo. EBioMedicine 2023; 90:104531. [PMID: 36947961 PMCID: PMC10033723 DOI: 10.1016/j.ebiom.2023.104531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Reprogramming resident glial cells to convert them into neurons in vivo represents a potential therapeutic strategy that could replenish lost neurons, repair damaged neural circuits, and restore function. AAV (adeno-associated virus)-based expression systems are powerful tools for in vivo gene delivery in glia-to-neuron reprogramming, however, recent studies show that AAV-based gene delivery of Neurod1 into the mouse brain can cause severe leaky expression into endogenous neurons leading to misinterpretation of glia-to-neuron conversion. METHODS AAV-based delivery systems were modified for improved in vivo delivery of Neurod1, Math5, Ascl1, and Neurog2 in the adult mouse retina and brain. To examine whether bona fide glia-to-neuron conversion occurs, stringent fate mapping experiments were performed to trace the lineage of glial cells. FINDINGS The neuronal leakage is prevalent after AAV-GFAP-mediated delivery of Neurod1, Math5, Ascl1, and Neurog2. The transgene-dependent leakage cannot be corrected after lowering the AAV doses, using alterative AAV serotypes or injection routes. Importantly, we report the development of two new AAV-based tools that can significantly reduce neuronal leakage. Using the new AAV-based tools, we provide evidence that Neurod1 gene transfer fails to convert lineage traced glial cells into neurons. INTERPRETATION Stringent fate mapping techniques independently of an AAV-based expression system are the golden standard for tracing the fate of glia cells during neuronal reprogramming. The newly developed AAV-based systems are invaluable tools for glia-to-neuron reprogramming in vivo. FUNDING The work in Chen lab was supported by National Institutes of Health (NIH) grants R01 EY024986 and R01 EY028921, an unrestricted challenge grant from Research to Prevent Blindness, the New York Eye and Ear Infirmary Foundation, and The Harold W. McGraw, Jr. Family Foundation for Vision Research. The work in Zhang lab was supported by NIH (R01 NS127375 and R01 NS117065) and The Decherd Foundation.
Collapse
Affiliation(s)
- Ye Xie
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lei-Lei Wang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
6
|
Agarwal D, Do H, Mazo KW, Chopra M, Wahlin KJ. Restoring vision and rebuilding the retina by Müller glial cell reprogramming. Stem Cell Res 2023; 66:103006. [PMID: 36563542 PMCID: PMC10783479 DOI: 10.1016/j.scr.2022.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Müller glia are non-neuronal support cells that play a vital role in the homeostasis of the eye. Their radial-oriented processes span the width of the retina and respond to injury through a cellular response that can be detrimental or protective depending on the context. In some species, protective responses include the expression of stem cell-like genes which help to fuel new neuron formation and even restoration of vision. In many lower vertebrates including fish and amphibians, this response is well documented, however, in mammals it is severely limited. The remarkable plasticity of cellular reprogramming in lower vertebrates has inspired studies in mammals for repairing the retina and restoring sight, and recent studies suggest that mammals are also capable of regeneration, albeit to a lesser degree. Endogenous regeneration, whereby new retinal neurons are created from existing support cells, offers an exciting alternative approach to existing tissue transplant, gene therapy, and neural prosthetic approaches being explored in parallel. This review will highlight the role of Müller glia during retinal injury and repair. In the end, prospects for advancing retinal regeneration research will be considered.
Collapse
Affiliation(s)
- Devansh Agarwal
- Department of Bioengineering, University of California, San Diego, United States; Department of Ophthalmology, University of California, San Diego, United States
| | - Hope Do
- Department of Ophthalmology, University of California, San Diego, United States; Department of Biological Sciences, University of California, San Diego, United States
| | - Kevin W Mazo
- Department of Ophthalmology, University of California, San Diego, United States; Department of Biological Sciences, University of California, San Diego, United States
| | - Manan Chopra
- Department of Ophthalmology, University of California, San Diego, United States; Department of Biological Sciences, University of California, San Diego, United States
| | - Karl J Wahlin
- Department of Ophthalmology, University of California, San Diego, United States.
| |
Collapse
|
7
|
Catalani E, Cherubini A, Del Quondam S, Cervia D. Regenerative Strategies for Retinal Neurons: Novel Insights in Non-Mammalian Model Organisms. Int J Mol Sci 2022; 23:ijms23158180. [PMID: 35897754 PMCID: PMC9331597 DOI: 10.3390/ijms23158180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
A detailed knowledge of the status of the retina in neurodegenerative conditions is a crucial point for the development of therapeutics in retinal pathologies and to translate eye research to CNS disease. In this context, manipulating signaling pathways that lead to neuronal regeneration offers an excellent opportunity to substitute damaged cells and, thus, restore the tissue functionality. Alternative systems and methods are increasingly being considered to replace/reduce in vivo approaches in the study of retina pathophysiology. Herein, we present recent data obtained from the zebrafish (Danio rerio) and the fruit fly Drosophila melanogaster that bring promising advantages into studying and modeling, at a preclinical level, neurodegeneration and regenerative approaches in retinal diseases. Indeed, the regenerative ability of vertebrate model zebrafish is particularly appealing. In addition, the fruit fly is ideal for regenerative studies due to its high degree of conservation with vertebrates and the broad spectrum of genetic variants achievable. Furthermore, a large part of the drosophila brain is dedicated to sight, thus offering the possibility of studying common mechanisms of the visual system and the brain at once. The knowledge acquired from these alternative models may help to investigate specific well-conserved factors of interest in human neuroregeneration after injuries or during pathologies.
Collapse
|
8
|
Xie Y, Zhou J, Chen B. Critical examination of Ptbp1-mediated glia-to-neuron conversion in the mouse retina. Cell Rep 2022; 39:110960. [PMID: 35705044 PMCID: PMC9371382 DOI: 10.1016/j.celrep.2022.110960] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
Reprogramming glial cells to convert them into neurons represents a potential therapeutic strategy that could repair damaged neural circuits and restore function. Recent studies show that downregulation of the RNA-binding protein PTBP1 leads to one-step conversion of Müller glia (MG) into retinal ganglion cells (RGCs) with a high efficiency. However, the original study did not perform fate-mapping experiments to confirm MG-to-RGC conversion after Ptbp1 downregulation. To address the fundamental question of whether Ptbp1 downregulation can convert MG into RGCs in the mouse retina, we perform fate-mapping experiments to lineage trace MG independent of the adeno-associated virus (AAV)-mediated labeling system. Here, we report that Ptbp1 downregulation by CRISPR-CasRx or small hairpin RNA is insufficient to convert MG to RGCs. The original conclusion of MG-to-RGC conversion is due to leaky labeling of endogenous RGCs. Our results emphasize the importance of using stringent fate mapping to determine glia-to-neuron conversion in cell reprogramming research. Leaky labeling of endogenous retinal ganglion cells (RGCs) leads to misinterpretation of glia-to-neuron conversion in the mouse retina. Using stringent fate-mapping experiments, Xie et al. show that lineage-traced Müller glia (MG) are not converted into RGCs after Ptbp1 downregulation by CRISPR-CasRx or small hairpin RNA.
Collapse
Affiliation(s)
- Ye Xie
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|