1
|
Skinner MW, Nhan PB, Simington CJ, Jordan PW. Meiotic divisions and round spermatid formation do not require centriole duplication in mice. PLoS Genet 2025; 21:e1011698. [PMID: 40294089 PMCID: PMC12064039 DOI: 10.1371/journal.pgen.1011698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/09/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Centrosomes, composed of centrioles and pericentriolar matrix proteins, are traditionally viewed as essential microtubule-organizing centers (MTOCs) that facilitate bipolar spindle formation and chromosome segregation during spermatogenesis. In this study, we investigated the role of centrioles in male germ cell development by using a murine conditional knockout (cKO) of Sas4, a critical component of centriole biogenesis. We found that while centriole duplication was impaired in Sas4 cKO spermatocytes, these cells were still capable of progressing through meiosis I and II. Chromosome segregation was able to proceed through the formation of a non-centrosomal MTOC, indicating that centrioles are not required for meiotic divisions. However, spermatids that inherited fewer than two centrioles exhibited severe defects in spermiogenesis, including improper manchette formation, constricted perinuclear rings, disrupted acrosome morphology, and failure to form flagella. Consequently, Sas4 cKO males were infertile due to the absence of functional spermatozoa. Our findings demonstrate that while centrioles are dispensable for meiosis in male germ cells, they are essential for spermiogenesis and sperm maturation. This work provides key insights into the role of centrosomes in male fertility and may have implications for understanding certain conditions of male infertility associated with centriole defects.
Collapse
Affiliation(s)
- Marnie W. Skinner
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Paula B. Nhan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Carter J. Simington
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
2
|
Huang W, Jeong S, Kim W, Chen L. Biomedical applications of organoids in genetic diseases. MEDICAL REVIEW (2021) 2025; 5:152-163. [PMID: 40224362 PMCID: PMC11987506 DOI: 10.1515/mr-2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 04/15/2025]
Abstract
Organoid technology has significantly transformed biomedical research by providing exceptional prospects for modeling human tissues and disorders in a laboratory setting. It has significant potential for understanding the intricate relationship between genetic mutations, cellular phenotypes, and disease pathology, especially in the field of genetic diseases. The intersection of organoid technology and genetic research offers great promise for comprehending the pathophysiology of genetic diseases and creating innovative treatment approaches customized for specific patients. This review aimed to present a thorough analysis of the current advancements in organoid technology and its biomedical applications for genetic diseases. We examined techniques for modeling genetic disorders using organoid platforms, analyze the approaches for incorporating genetic disease organoids into clinical practice, and showcase current breakthroughs in preclinical application, individualized healthcare, and transplantation. Through the integration of knowledge from several disciplines, such as genetics, regenerative medicine, and biological engineering, our aim is to enhance our comprehension of the complex connection between genetic variations and organoid models in relation to human health and disease.
Collapse
Affiliation(s)
- Wenhua Huang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Winden KD, Gisser I, Sahin M. Using cortical organoids to understand the pathogenesis of malformations of cortical development. Front Neurosci 2025; 18:1522652. [PMID: 39881808 PMCID: PMC11774837 DOI: 10.3389/fnins.2024.1522652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Malformations of cortical development encompass a broad range of disorders associated with abnormalities in corticogenesis. Widespread abnormalities in neuronal formation or migration can lead to small head size or microcephaly with disorganized placement of cell types. Specific, localized malformations are termed focal cortical dysplasias (FCD). Neurodevelopmental disorders are common in all types of malformations of cortical development with the most prominent being refractory epilepsy, behavioral disorders such as autism spectrum disorder (ASD), and learning disorders. Several genetic pathways have been associated with these disorders from control of cell cycle and cytoskeletal dynamics in global malformations to variants in growth factor signaling pathways, especially those interacting with the mechanistic target of rapamycin (mTOR), in FCDs. Despite advances in understanding these disorders, the underlying developmental pathways that lead to lesion formation and mechanisms through which defects in cortical development cause specific neurological symptoms often remains unclear. One limitation is the difficulty in modeling these disorders, as animal models frequently do not faithfully mirror the human phenotype. To circumvent this obstacle, many investigators have turned to three-dimensional human stem cell models of the brain, known as organoids, because they recapitulate early neurodevelopmental processes. High throughput analysis of these organoids presents a promising opportunity to model pathophysiological processes across the breadth of malformations of cortical development. In this review, we highlight advances in understanding the pathophysiology of brain malformations using organoid models.
Collapse
Affiliation(s)
| | | | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Jhanji M, York EM, Lizarraga SB. The power of human stem cell-based systems in the study of neurodevelopmental disorders. Curr Opin Neurobiol 2024; 89:102916. [PMID: 39293245 DOI: 10.1016/j.conb.2024.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Neurodevelopmental disorders (NDDs) affect 15% of children and are usually associated with intellectual disability, seizures, and autistic behaviors, among other neurological presentations. Mutations in a wide spectrum of gene families alter key stages of human brain development, leading to defects in neural circuits or brain architecture. Studies in animal systems have provided important insights into the pathobiology of several NDDs. Human stem cell technologies provide a complementary system that allows functional manipulation of human brain cells during developmental stages that would otherwise be inaccessible during human fetal brain development. Therefore, stem cell-based models advance our understanding of human brain development by revealing human-specific mechanisms contributing to the broad pathogenesis of NDDs. We provide a comprehensive overview of the latest research on two and three-dimensional human stem cell-based models. First, we discuss convergent cellular and molecular phenotypes across different NDDs that have been revealed by human iPSC systems. Next, we examine the contribution of in vitro human neural systems to the development of promising therapeutic strategies. Finally, we explore the potential of stem cell systems to draw mechanistic insight for the study of sex dimorphism within NDDs.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02906, USA; Center for Translational Neuroscience, Carney Brain Institute, Brown University, Providence RI 02906, USA
| | - Elisa M York
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02906, USA; Center for Translational Neuroscience, Carney Brain Institute, Brown University, Providence RI 02906, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02906, USA; Center for Translational Neuroscience, Carney Brain Institute, Brown University, Providence RI 02906, USA.
| |
Collapse
|
5
|
Stracker TH. Regulation of p53 by the mitotic surveillance/stopwatch pathway: implications in neurodevelopment and cancer. Front Cell Dev Biol 2024; 12:1451274. [PMID: 39398482 PMCID: PMC11466822 DOI: 10.3389/fcell.2024.1451274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024] Open
Abstract
The transcription factor p53 (encoded by TP53) plays diverse roles in human development and disease. While best known for its role in tumor suppression, p53 signaling also influences mammalian development by triggering cell fate decisions in response to a wide variety of stresses. After over 4 decades of study, a new pathway that triggers p53 activation in response to mitotic delays was recently identified. Termed the mitotic surveillance or mitotic stopwatch pathway, the USP28 and 53BP1 proteins activate p53 in response to delayed mitotic progression to control cell fate and promote genomic stability. In this Minireview, I discuss its identification, potential roles in neurodevelopmental disorders and cancer, as well as explore outstanding questions about its function, regulation and potential use as a biomarker for anti-mitotic therapies.
Collapse
Affiliation(s)
- Travis H. Stracker
- Center for Cancer Research, Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
6
|
Deng M, Li X, Shi D, Fan Q, Zhang H, Wang Z, Wang Y, Xiao Z. iTRAQ-Based Serum Proteomic Analysis Reveals Multifactorial Cellular Function Impairment and Aggravated Systematic Inflammation in Drug-free Obsessive-Compulsive Disorders. ACS Chem Neurosci 2024; 15:3053-3063. [PMID: 39120470 DOI: 10.1021/acschemneuro.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental disorder with obvious difficulties in treatment. Its pathogenesis has not been fully elucidated. Further understanding of etiology and mechanism needs to be explored further. We employed the isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to compare serum proteome profile between OCD patients and healthy controls, in order to find out the possible mechanism of OCD in the downstream biological process. Eighty-one drug-free OCD patients and 78 healthy controls were enrolled. A total of 475 proteins were identified. Totally, 80 proteins with p < 0.05 were selected for gene set enrichment analysis (GSEA), and only those with a fold change ≥1.2 and q value <0.2 between groups were accepted as differentially expressed proteins (DEPs). We observed a significant enrichment of immuno-inflammation-related pathways, along with intriguing expression trends that immuno-inflammation-related proteins were upregulated in GSEA. After that, 2 up-regulated proteins and 13 down-regulated ones were accepted as DEP. According to the available literature, most of the DEPs have not been reported in OCD. These DEPs were enriched in 121 gene ontology (GO) terms, including hepatocyte growth factor receptor activity, angiogenin-PRI complex, and so on. DEPs were enriched in pathways including adherens junction in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Alterations in DEPs including STXBP5L, GRN, and ANG were validated in OCD animal models. Our study suggested that OCD patients manifested multifactorial impairment in neuronal or non-neuronal cellular function under the inflammatory background. Further research employing larger sample sizes, longitudinal design, stratified analysis, and multiomics methodology will be needed. Experiments in laboratories were essential in illuminating the mechanism.
Collapse
Affiliation(s)
- Miaohan Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Dongdong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haiyin Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yuan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zeping Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
7
|
Sterling NA, Cho SH, Kim S. Entosis implicates a new role for P53 in microcephaly pathogenesis, beyond apoptosis. Bioessays 2024; 46:e2300245. [PMID: 38778437 DOI: 10.1002/bies.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Entosis, a form of cell cannibalism, is a newly discovered pathogenic mechanism leading to the development of small brains, termed microcephaly, in which P53 activation was found to play a major role. Microcephaly with entosis, found in Pals1 mutant mice, displays P53 activation that promotes entosis and apoptotic cell death. This previously unappreciated pathogenic mechanism represents a novel cellular dynamic in dividing cortical progenitors which is responsible for cell loss. To date, various recent models of microcephaly have bolstered the importance of P53 activation in cell death leading to microcephaly. P53 activation caused by mitotic delay or DNA damage manifests apoptotic cell death which can be suppressed by P53 removal in these animal models. Such genetic studies attest P53 activation as quality control meant to eliminate genomically unfit cells with minimal involvement in the actual function of microcephaly associated genes. In this review, we summarize the known role of P53 activation in a variety of microcephaly models and introduce a novel mechanism wherein entotic cell cannibalism in neural progenitors is triggered by P53 activation.
Collapse
Affiliation(s)
- Noelle A Sterling
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Biomedical Sciences Graduate Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Seo-Hee Cho
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
9
|
Jaiswal S, Sanghi S, Singh P. Separation-of-function MCPH-associated mutations in CPAP affect centriole number and length. J Cell Sci 2023; 136:jcs261297. [PMID: 37823337 DOI: 10.1242/jcs.261297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Centrioles are microtubule-based cylindrical ultrastructures characterized by their definite size and robustness. The molecular capping protein, CPAP (also known as CENPJ) engages its N-terminal region with the centriole microtubules to regulate their length. Nevertheless, the conserved C-terminal glycine-rich G-box of CPAP, which interacts with the centriole inner cartwheel protein STIL, is frequently mutated in primary microcephaly (MCPH) patients. Here, we show that two different MCPH-associated variants, E1235V and D1196N in the CPAP G-box, affect distinct functions at centrioles. The E1235V mutation reduces CPAP centriole recruitment and causes overly long centrioles. The D1196N mutation increases centriole numbers without affecting centriole localization. Both mutations prevent binding to STIL, which controls centriole duplication. Our work highlights the involvement of an alternative CEP152-dependent route for CPAP centriole localization. Molecular dynamics simulations suggest that E1235V leads to an increase in G-box flexibility, which could have implications on its molecular interactions. Collectively, we demonstrate that a CPAP region outside the microtubule-interacting domains influences centriole number and length, which translates to spindle defects and reduced cell viability. Our work provides new insights into the molecular causes of primary microcephaly.
Collapse
Affiliation(s)
- Sonal Jaiswal
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342037, Jodhpur, Rajasthan, India
| | - Srishti Sanghi
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342037, Jodhpur, Rajasthan, India
| | - Priyanka Singh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342037, Jodhpur, Rajasthan, India
| |
Collapse
|
10
|
Iegiani G, Ferraro A, Pallavicini G, Di Cunto F. The impact of TP53 activation and apoptosis in primary hereditary microcephaly. Front Neurosci 2023; 17:1220010. [PMID: 37457016 PMCID: PMC10338886 DOI: 10.3389/fnins.2023.1220010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a constellation of disorders that share significant brain size reduction and mild to moderate intellectual disability, which may be accompanied by a large variety of more invalidating clinical signs. Extensive neural progenitor cells (NPC) proliferation and differentiation are essential to determine brain final size. Accordingly, the 30 MCPH loci mapped so far (MCPH1-MCPH30) encode for proteins involved in microtubule and spindle organization, centriole biogenesis, nuclear envelope, DNA replication and repair, underscoring that a wide variety of cellular processes is required for sustaining NPC expansion during development. Current models propose that altered balance between symmetric and asymmetric division, as well as premature differentiation, are the main mechanisms leading to MCPH. Although studies of cellular alterations in microcephaly models have constantly shown the co-existence of high DNA damage and apoptosis levels, these mechanisms are less considered as primary factors. In this review we highlight how the molecular and cellular events produced by mutation of the majority of MCPH genes may converge on apoptotic death of NPCs and neurons, via TP53 activation. We propose that these mechanisms should be more carefully considered in the alterations of the sophisticated equilibrium between proliferation, differentiation and death produced by MCPH gene mutations. In consideration of the potential druggability of cell apoptotic pathways, a better understanding of their role in MCPH may significantly facilitate the development of translational approaches.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Alessia Ferraro
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Gianmarco Pallavicini
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Ferdinando Di Cunto
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| |
Collapse
|
11
|
Damianidou E, Mouratidou L, Kyrousi C. Research models of neurodevelopmental disorders: The right model in the right place. Front Neurosci 2022; 16:1031075. [PMID: 36340790 PMCID: PMC9630472 DOI: 10.3389/fnins.2022.1031075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous group of impairments that affect the development of the central nervous system leading to abnormal brain function. NDDs affect a great percentage of the population worldwide, imposing a high societal and economic burden and thus, interest in this field has widely grown in recent years. Nevertheless, the complexity of human brain development and function as well as the limitations regarding human tissue usage make their modeling challenging. Animal models play a central role in the investigation of the implicated molecular and cellular mechanisms, however many of them display key differences regarding human phenotype and in many cases, they partially or completely fail to recapitulate them. Although in vitro two-dimensional (2D) human-specific models have been highly used to address some of these limitations, they lack crucial features such as complexity and heterogeneity. In this review, we will discuss the advantages, limitations and future applications of in vivo and in vitro models that are used today to model NDDs. Additionally, we will describe the recent development of 3-dimensional brain (3D) organoids which offer a promising approach as human-specific in vitro models to decipher these complex disorders.
Collapse
Affiliation(s)
- Eleni Damianidou
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Lidia Mouratidou
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
- First Department of Psychiatry, Medical School, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Kyrousi
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
- First Department of Psychiatry, Medical School, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Christina Kyrousi,
| |
Collapse
|
12
|
Xiaoshuai L, Qiushi W, Rui W. Advantages of CRISPR-Cas9 combined organoid model in the study of congenital nervous system malformations. Front Bioeng Biotechnol 2022; 10:932936. [PMID: 36118578 PMCID: PMC9478582 DOI: 10.3389/fbioe.2022.932936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
In the past 10 years, gene-editing and organoid culture have completely changed the process of biology. Congenital nervous system malformations are difficult to study due to their polygenic pathogenicity, the complexity of cellular and neural regions of the brain, and the dysregulation of specific neurodevelopmental processes in humans. Therefore, the combined application of CRISPR-Cas9 in organoid models may provide a technical platform for studying organ development and congenital diseases. Here, we first summarize the occurrence of congenital neurological malformations and discuss the different modeling methods of congenital nervous system malformations. After that, it focuses on using organoid to model congenital nervous system malformations. Then we summarized the application of CRISPR-Cas9 in the organoid platform to study the pathogenesis and treatment strategies of congenital nervous system malformations and finally looked forward to the future.
Collapse
Affiliation(s)
- Li Xiaoshuai
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wang Qiushi
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wang Rui
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
- *Correspondence: Wang Rui,
| |
Collapse
|
13
|
Using mammary organoids to study cilia. Methods Cell Biol 2022; 175:221-233. [PMID: 36967142 DOI: 10.1016/bs.mcb.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cilia are hair-like projections that assemble at the surface of cells in various tissues of multicellular organisms through a complex cell biological process called ciliogenesis. Cilia can assemble as single structures per cell (i.e. non-motile primary cilia), which act as cell signaling centers that dictate cell fate, or can be assembled in distinct cell types as many copies per cell (i.e. motile cilia) that beat to move fluids at the cell surface. The mechanisms that orchestrate formation and function of cilia, which are dysregulated in pathological settings such as ciliopathies, remain incompletely understood. Stem cell-derived organoids represent valuable models to study the mechanisms of ciliogenesis, ciliary signaling, and ciliary beating that collectively promote tissue development and homeostasis. Here, we present a comprehensive protocol for the growth of mammary organoids derived from mouse mammary stem cells and for immunofluorescence staining of primary cilia in these three-dimensional structures.
Collapse
|