1
|
Enoma D. Genomics in Clinical trials for Breast Cancer. Brief Funct Genomics 2024; 23:325-334. [PMID: 38146120 DOI: 10.1093/bfgp/elad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023] Open
Abstract
Breast cancer (B.C.) still has increasing incidences and mortality rates globally. It is known that B.C. and other cancers have a very high rate of genetic heterogeneity and genomic mutations. Traditional oncology approaches have not been able to provide a lasting solution. Targeted therapeutics have been instrumental in handling the complexity and resistance associated with B.C. However, the progress of genomic technology has transformed our understanding of the genetic landscape of breast cancer, opening new avenues for improved anti-cancer therapeutics. Genomics is critical in developing tailored therapeutics and identifying patients most benefit from these treatments. The next generation of breast cancer clinical trials has incorporated next-generation sequencing technologies into the process, and we have seen benefits. These innovations have led to the approval of better-targeted therapies for patients with breast cancer. Genomics has a role to play in clinical trials, including genomic tests that have been approved, patient selection and prediction of therapeutic response. Multiple clinical trials in breast cancer have been done and are still ongoing, which have applied genomics technology. Precision medicine can be achieved in breast cancer therapy with increased efforts and advanced genomic studies in this domain. Genomics studies assist with patient outcomes improvement and oncology advancement by providing a deeper understanding of the biology behind breast cancer. This article will examine the present state of genomics in breast cancer clinical trials.
Collapse
Affiliation(s)
- David Enoma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
2
|
Liu Z, Xie Z, Li M. Comprehensive and deep evaluation of structural variation detection pipelines with third-generation sequencing data. Genome Biol 2024; 25:188. [PMID: 39010145 PMCID: PMC11247875 DOI: 10.1186/s13059-024-03324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Structural variation (SV) detection methods using third-generation sequencing data are widely employed, yet accurately detecting SVs remains challenging. Different methods often yield inconsistent results for certain SV types, complicating tool selection and revealing biases in detection. RESULTS This study comprehensively evaluates 53 SV detection pipelines using simulated and real data from PacBio (CLR: Continuous Long Read, CCS: Circular Consensus Sequencing) and Nanopore (ONT) platforms. We assess their performance in detecting various sizes and types of SVs, breakpoint biases, and genotyping accuracy with various sequencing depths. Notably, pipelines such as Minimap2-cuteSV2, NGMLR-SVIM, PBMM2-pbsv, Winnowmap-Sniffles2, and Winnowmap-SVision exhibit comparatively higher recall and precision. Our findings also show that combining multiple pipelines with the same aligner, like pbmm2 or winnowmap, can significantly enhance performance. The individual pipelines' detailed ranking and performance metrics can be viewed in a dynamic table: http://pmglab.top/SVPipelinesRanking . CONCLUSIONS This study comprehensively characterizes the strengths and weaknesses of numerous pipelines, providing valuable insights that can improve SV detection in third-generation sequencing data and inform SV annotation and function prediction.
Collapse
Affiliation(s)
- Zhi Liu
- Program in Bioinformatics, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Miaoxin Li
- Program in Bioinformatics, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China.
- Department of Psychiatry, The University of Hong Kong, Hong Kong, SAR, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China.
| |
Collapse
|
3
|
Ou J, Wang J, Sun J, Ni M, Meng Q, Ding J, Fan H, Feng S, Huang Y, Li H, Fei J. Analysis of Preimplantation and Clinical Outcomes of Two Cases by Oxford Nanopore Sequencing. Reprod Sci 2024; 31:2123-2134. [PMID: 38347380 DOI: 10.1007/s43032-024-01470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/19/2024] [Indexed: 07/03/2024]
Abstract
It is challenging to distinguish embryos with a balanced translocation karyotype from a normal karyotype by existing conventional genetic testing methods. However, in germ-cell gamete generation, chromosome exchange and separation through cell meiosis form a different proportion of unbalanced gametes. Adverse birth events may occur, such as repeated miscarriages and fetal birth defects. In this study, the exact breakpoints of structural variation (SV) from two balanced translocation carrier families by using Nanopore long reads sequencing technology were obtained, and haplotype analysis and Sanger verified the accuracy of the detection results, confirming the application value of the Nanopore sequencing technology in the detection of balanced translocation before embryo implantation. Nanopore long-read sequencing was performed to find the precise breakpoint of chromosome-balanced translocation carriers. The breakpoints were subsequently verified by designing primers across the breakpoints and Sanger sequencing. Haplotype linkage analysis of SNPs which can be linked by a read block of families around the breakpoint regions was followed. After frozen (-thawed) embryo transfer (FET), prenatal cytogenetic analysis of amniotic fluid cells confirmed the predicted karyotypes from the transferred embryos. The presence of breakpoints was detected in three embryos of patient 1. No breakpoints were detected in either embryo of patient 2. One balanced translocated embryo from patient 1 and one normal euploid embryo from patient 2 were transplanted back into the patients, and amniotic fluid cells were analyzed for the karyotype of fetuses. The results were entirely consistent with the fetal karyotype. And through late follow-up, both patients successfully had a live birth fetus. The breakpoint location of the balanced chromosome translocation can be accurately found by Nanopore sequencing. The haplotype of carriers can be successfully constructed by Nanopore and sanger sequencing confirmed that the results were accurate. This is very advantageous for preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) detection in the families without proband.
Collapse
Affiliation(s)
- Jian Ou
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | | | - Jian Sun
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Mengxia Ni
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - QingXia Meng
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Jie Ding
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Haiyang Fan
- Peking Jabrehoo Med-Tech Co., Ltd, Beijing, China
| | - Shaohua Feng
- Peking Jabrehoo Med-Tech Co., Ltd, Beijing, China
| | - Yining Huang
- Peking Jabrehoo Med-Tech Co., Ltd, Beijing, China
| | - Hong Li
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China.
| | - Jia Fei
- Peking Jabrehoo Med-Tech Co., Ltd, Beijing, China.
| |
Collapse
|
4
|
Wang W, Li Y, Ko S, Feng N, Zhang M, Liu JJ, Zheng S, Ren B, Yu YP, Luo JH, Tseng GC, Liu S. IFDlong: an isoform and fusion detector for accurate annotation and quantification of long-read RNA-seq data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593690. [PMID: 38798496 PMCID: PMC11118288 DOI: 10.1101/2024.05.11.593690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Advancements in long-read transcriptome sequencing (long-RNA-seq) technology have revolutionized the study of isoform diversity. These full-length transcripts enhance the detection of various transcriptome structural variations, including novel isoforms, alternative splicing events, and fusion transcripts. By shifting the open reading frame or altering gene expressions, studies have proved that these transcript alterations can serve as crucial biomarkers for disease diagnosis and therapeutic targets. In this project, we proposed IFDlong, a bioinformatics and biostatistics tool to detect isoform and fusion transcripts using bulk or single-cell long-RNA-seq data. Specifically, the software performed gene and isoform annotation for each long-read, defined novel isoforms, quantified isoform expression by a novel expectation-maximization algorithm, and profiled the fusion transcripts. For evaluation, IFDlong pipeline achieved overall the best performance when compared with several existing tools in large-scale simulation studies. In both isoform and fusion transcript quantification, IFDlong is able to reach more than 0.8 Spearman's correlation with the truth, and more than 0.9 cosine similarity when distinguishing multiple alternative splicing events. In novel isoform simulation, IFDlong can successfully balance the sensitivity (higher than 90%) and specificity (higher than 90%). Furthermore, IFDlong has proved its accuracy and robustness in diverse in-house and public datasets on healthy tissues, cell lines and multiple types of diseases. Besides bulk long-RNA-seq, IFDlong pipeline has proved its compatibility to single-cell long-RNA-seq data. This new software may hold promise for significant impact on long-read transcriptome analysis. The IFDlong software is available at https://github.com/wenjiaking/IFDlong.
Collapse
Affiliation(s)
- Wenjia Wang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Yuzhen Li
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Sungjin Ko
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Ning Feng
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Manling Zhang
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Jia-Jun Liu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Songyang Zheng
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Baoguo Ren
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Yan P. Yu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Jian-Hua Luo
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - George C. Tseng
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Silvia Liu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
5
|
Ermini L, Driguez P. The Application of Long-Read Sequencing to Cancer. Cancers (Basel) 2024; 16:1275. [PMID: 38610953 PMCID: PMC11011098 DOI: 10.3390/cancers16071275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer is a multifaceted disease arising from numerous genomic aberrations that have been identified as a result of advancements in sequencing technologies. While next-generation sequencing (NGS), which uses short reads, has transformed cancer research and diagnostics, it is limited by read length. Third-generation sequencing (TGS), led by the Pacific Biosciences and Oxford Nanopore Technologies platforms, employs long-read sequences, which have marked a paradigm shift in cancer research. Cancer genomes often harbour complex events, and TGS, with its ability to span large genomic regions, has facilitated their characterisation, providing a better understanding of how complex rearrangements affect cancer initiation and progression. TGS has also characterised the entire transcriptome of various cancers, revealing cancer-associated isoforms that could serve as biomarkers or therapeutic targets. Furthermore, TGS has advanced cancer research by improving genome assemblies, detecting complex variants, and providing a more complete picture of transcriptomes and epigenomes. This review focuses on TGS and its growing role in cancer research. We investigate its advantages and limitations, providing a rigorous scientific analysis of its use in detecting previously hidden aberrations missed by NGS. This promising technology holds immense potential for both research and clinical applications, with far-reaching implications for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Luca Ermini
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Patrick Driguez
- Bioscience Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Wang B, Dong J, Yang F, Ju T, Wang J, Qu K, Wang Y, Tian Y, Wang Z. Determining the degree of chromosomal instability in breast cancer cells by atomic force microscopy. Analyst 2024; 149:1988-1997. [PMID: 38420857 DOI: 10.1039/d3an01815f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Chromosomal instability (CIN) is a source of genetic variation and is highly linked to the malignance of cancer. Determining the degree of CIN is necessary for understanding the role that it plays in tumor development. There is currently a lack of research on high-resolution characterization of CIN and the relationship between CIN and cell mechanics. Here, a method to determine CIN of breast cancer cells by high resolution imaging with atomic force microscopy (AFM) is explored. The numerical and structural changes of chromosomes in human breast cells (MCF-10A), moderately malignant breast cells (MCF-7) and highly malignant breast cells (MDA-MB-231) were observed and analyzed by AFM. Meanwhile, the nuclei, cytoskeleton and cell mechanics of the three kinds of cells were also investigated. The results showed the differences in CIN between the benign and cancer cells. Also, the degree of structural CIN increased with enhanced malignancy of cancer cells. This was also demonstrated by calculating the probability of micronucleus formation in these three kinds of cells. Meanwhile, we found that the area of the nucleus was related to the number of chromosomes in the nucleus. In addition, reduced or even aggregated actin fibers led to decreased elasticities in MCF-7 and MDA-MB-231 cells. It was found that the rearrangement of actin fibers would affect the nucleus, and then lead to wrong mitosis and CIN. Using AFM to detect chromosomal changes in cells with different malignancy degrees provides a new detection method for the study of cell carcinogenesis with a perspective for targeted therapy of cancer.
Collapse
Affiliation(s)
- Bowei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Fan Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Tuoyu Ju
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Junxi Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Kaige Qu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
7
|
Helal AA, Saad BT, Saad MT, Mosaad GS, Aboshanab KM. Benchmarking long-read aligners and SV callers for structural variation detection in Oxford nanopore sequencing data. Sci Rep 2024; 14:6160. [PMID: 38486064 PMCID: PMC10940726 DOI: 10.1038/s41598-024-56604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Structural variants (SVs) are one of the significant types of DNA mutations and are typically defined as larger-than-50-bp genomic alterations that include insertions, deletions, duplications, inversions, and translocations. These modifications can profoundly impact the phenotypic characteristics and contribute to disorders like cancer, response to treatment, and infections. Four long-read aligners and five SV callers have been evaluated using three Oxford Nanopore NGS human genome datasets in terms of precision, recall, and F1-score statistical metrics, depth of coverage, and speed of analysis. The best SV caller regarding recall, precision, and F1-score when matched with different aligners at different coverage levels tend to vary depending on the dataset and the specific SV types being analyzed. However, based on our findings, Sniffles and CuteSV tend to perform well across different aligners and coverage levels, followed by SVIM, PBSV, and SVDSS in the last place. The CuteSV caller has the highest average F1-score (82.51%) and recall (78.50%), and Sniffles has the highest average precision value (94.33%). Minimap2 as an aligner and Sniffles as an SV caller act as a strong base for the pipeline of SV calling because of their high speed and reasonable accomplishment. PBSV has a lower average F1-score, precision, and recall and may generate more false positives and overlook some actual SVs. Our results are valuable in the comprehensive evaluation of popular SV callers and aligners as they provide insight into the performance of several long-read aligners and SV callers and serve as a reference for researchers in selecting the most suitable tools for SV detection.
Collapse
Affiliation(s)
- Asmaa A Helal
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt.
| | - Mina T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Gamal S Mosaad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abassi, Cairo, 11566, Egypt.
| |
Collapse
|
8
|
Liu X, Zheng J, Ding J, Wu J, Zuo F, Zhang G. When Livestock Genomes Meet Third-Generation Sequencing Technology: From Opportunities to Applications. Genes (Basel) 2024; 15:245. [PMID: 38397234 PMCID: PMC10888458 DOI: 10.3390/genes15020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Third-generation sequencing technology has found widespread application in the genomic, transcriptomic, and epigenetic research of both human and livestock genetics. This technology offers significant advantages in the sequencing of complex genomic regions, the identification of intricate structural variations, and the production of high-quality genomes. Its attributes, including long sequencing reads, obviation of PCR amplification, and direct determination of DNA/RNA, contribute to its efficacy. This review presents a comprehensive overview of third-generation sequencing technologies, exemplified by single-molecule real-time sequencing (SMRT) and Oxford Nanopore Technology (ONT). Emphasizing the research advancements in livestock genomics, the review delves into genome assembly, structural variation detection, transcriptome sequencing, and epigenetic investigations enabled by third-generation sequencing. A comprehensive analysis is conducted on the application and potential challenges of third-generation sequencing technology for genome detection in livestock. Beyond providing valuable insights into genome structure analysis and the identification of rare genes in livestock, the review ventures into an exploration of the genetic mechanisms underpinning exemplary traits. This review not only contributes to our understanding of the genomic landscape in livestock but also provides fresh perspectives for the advancement of research in this domain.
Collapse
Affiliation(s)
- Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Junyuan Zheng
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Jialan Ding
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| |
Collapse
|
9
|
Damaraju N, Miller AL, Miller DE. Long-Read DNA and RNA Sequencing to Streamline Clinical Genetic Testing and Reduce Barriers to Comprehensive Genetic Testing. J Appl Lab Med 2024; 9:138-150. [PMID: 38167773 DOI: 10.1093/jalm/jfad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Obtaining a precise molecular diagnosis through clinical genetic testing provides information about disease prognosis or progression, allows accurate counseling about recurrence risk, and empowers individuals to benefit from precision therapies or take part in N-of-1 trials. Unfortunately, more than half of individuals with a suspected Mendelian condition remain undiagnosed after a comprehensive clinical evaluation, and the results of any individual clinical genetic test ordered during a typical evaluation may take weeks or months to return. Furthermore, commonly used technologies, such as short-read sequencing, are limited in the types of disease-causing variation they can identify. New technologies, such as long-read sequencing (LRS), are poised to solve these problems. CONTENT Recent technical advances have improved accuracy, increased throughput, and decreased the costs of commercially available LRS technologies. This has resolved many historical concerns about the use of LRS in the clinical environment and opened the door to widespread clinical adoption of LRS. Here, we review LRS technology, how it has been used in the research setting to clarify complex variants or identify disease-causing variation missed by prior clinical testing, and how it may be used clinically in the near future. SUMMARY LRS is unique in that, as a single data source, it has the potential to replace nearly every other clinical genetic test offered today. When analyzed in a stepwise fashion, LRS will simplify laboratory processes, reduce barriers to comprehensive genetic testing, increase the rate of genetic diagnoses, and shorten the amount of time required to make a molecular diagnosis.
Collapse
Affiliation(s)
- Nikhita Damaraju
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, United States
| | - Angela L Miller
- Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
| | - Danny E Miller
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, United States
- Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
10
|
Ling X, Wang C, Li L, Pan L, Huang C, Zhang C, Huang Y, Qiu Y, Lin F, Huang Y. Third-generation sequencing for genetic disease. Clin Chim Acta 2023; 551:117624. [PMID: 37923104 DOI: 10.1016/j.cca.2023.117624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Third-generation sequencing (TGS) has led to a brave new revolution in detecting genetic diseases over the last few years. TGS has been rapidly developed for genetic disease applications owing to its significant advantages such as long read length, rapid detection, and precise detection of complex and rare structural variants. This approach greatly improves the efficiency of disease diagnosis and complements the shortcomings of short-read sequencing. In this paper, we first briefly introduce the working mechanism of one of the most important representatives of TGS, single-molecule real-time (SMRT) sequencing by Pacific Bioscience (PacBio), followed by a review and comparison of the advantages and disadvantages of different sequencing technologies. Finally, we focused on the progress of SMRT sequencing applications in genetic disease detection. Future perspectives on the applications of TGS in other fields were also presented. With the continuous innovation of the SMRT technologies and the expansion of their fields of application, SMRT sequencing has broad clinical application prospects in genetic diseases detection, and is expected to become an important tool for the molecular diagnosis of other diseases.
Collapse
Affiliation(s)
- Xiaoting Ling
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Chenghan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Linlin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Liqiu Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Chaoyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Caixia Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Yunhua Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China
| | - Yuling Qiu
- NHC Key Laboratory of Thalassemia Medicine, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Thalassemia Research, Guangxi Medical University, Nanning 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China.
| | - Yifang Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
11
|
Zhan L, Gui C, Wei W, Liu J, Gui B. Third generation sequencing transforms the way of the screening and diagnosis of thalassemia: a mini-review. Front Pediatr 2023; 11:1199609. [PMID: 37484768 PMCID: PMC10357962 DOI: 10.3389/fped.2023.1199609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Thalassemia is an inherited blood disorder imposing a significant social and economic burden. Comprehensive screening strategies are essential for the prevention and management of this disease. Third-generation sequencing (TGS), a breakthrough technology, has shown great potential for screening and diagnostic applications in various diseases, while its application in thalassemia detection is still in its infancy. This review aims to understand the latest and most widespread uses, advantages of TGS technologies, as well as the challenges and solutions associated with their incorporation into routine screening and diagnosis of thalassemia. Overall, TGS has exhibited higher rates of positive detection and diagnostic accuracy compared to conventional methods and next-generation sequencing technologies, indicating that TGS will be a feasible option for clinical laboratories conducting in-house thalassemia testing. The implementation of TGS technology in thalassemia diagnosis will facilitate the development of effective prevention and management strategies, thereby reducing the burden of this disease on individuals and society.
Collapse
Affiliation(s)
- Lixia Zhan
- The Second School of Medicine, Guangxi Medical University, Nanning, China
- Child Healthcare Department, The Second People's Hospital of Beihai, Beihai, China
| | - Chunrong Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juliang Liu
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Baoheng Gui
- The Second School of Medicine, Guangxi Medical University, Nanning, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 185.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
13
|
Dorney R, Dhungel BP, Rasko JEJ, Hebbard L, Schmitz U. Recent advances in cancer fusion transcript detection. Brief Bioinform 2022; 24:6918739. [PMID: 36527429 PMCID: PMC9851307 DOI: 10.1093/bib/bbac519] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Extensive investigation of gene fusions in cancer has led to the discovery of novel biomarkers and therapeutic targets. To date, most studies have neglected chromosomal rearrangement-independent fusion transcripts and complex fusion structures such as double or triple-hop fusions, and fusion-circRNAs. In this review, we untangle fusion-related terminology and propose a classification system involving both gene and transcript fusions. We highlight the importance of RNA-level fusions and how long-read sequencing approaches can improve detection and characterization. Moreover, we discuss novel bioinformatic tools to identify fusions in long-read sequencing data and strategies to experimentally validate and functionally characterize fusion transcripts.
Collapse
Affiliation(s)
- Ryley Dorney
- epartment of Molecular & Cell Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Douglas, QLD 4811, Australia,Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - Bijay P Dhungel
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia,Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2006, Australia,Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia,Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lionel Hebbard
- epartment of Molecular & Cell Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Douglas, QLD 4811, Australia,Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Ulf Schmitz
- Corresponding author. Ulf Schmitz, Department of Molecular and Cell Biology, College of Public Health, Medical and Vet Sciences, James Cook University, Douglas, QLD 4811, Australia. E-mail:
| |
Collapse
|