1
|
Andriatsilavo M, Barata C, Reifenstein E, Dumoulin A, Tao Griffin T, Dutta SB, Stoeckli ET, von Kleist M, Hiesinger PR, Hassan BA. Sequential and independent probabilistic events regulate differential axon targeting during development in Drosophila melanogaster. Nat Neurosci 2025; 28:998-1011. [PMID: 40335773 DOI: 10.1038/s41593-025-01937-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/03/2025] [Indexed: 05/09/2025]
Abstract
Variation in brain wiring contributes to non-heritable behavioral individuality. How and when these individualized wiring patterns emerge and stabilize during development remains unexplored. In this study, we investigated the axon targeting dynamics of Drosophila visual projecting neurons called DCNs/LC14s, using four-dimensional live-imaging, mathematical modeling and experimental validation. We found that alternative axon targeting choices are driven by a sequence of two independent genetically encoded stochastic processes. Early Notch lateral inhibition segregates DCNs into NotchON proximally targeting axons and NotchOFF axons that adopt a bi-potential transitory state. Subsequently, probabilistic accumulation of stable microtubules in a fraction of NotchOFF axons leads to distal target innervation, whereas the rest retract to adopt a NotchON target choice. The sequential wiring decisions result in the stochastic selection of different numbers of distally targeting axons in each individual. In summary, this work provides a conceptual and mechanistic framework for the emergence of individually variable, yet robust, circuit diagrams during development.
Collapse
Affiliation(s)
- Maheva Andriatsilavo
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
- Division of Neurobiology of the Institute for Biology, Free University, Berlin, Germany
| | - Carolina Barata
- Department of Mathematics and Computer Science, Free University, Berlin, Germany
| | - Eric Reifenstein
- Department of Mathematics and Computer Science, Free University, Berlin, Germany
| | - Alexandre Dumoulin
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Tian Tao Griffin
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Suchetana Bias Dutta
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
- Division of Neurobiology of the Institute for Biology, Free University, Berlin, Germany
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Esther T Stoeckli
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Max von Kleist
- Department of Mathematics and Computer Science, Free University, Berlin, Germany
- Project Group 5 'Systems Medicine of Infectious Disease', Robert Koch Institute, Berlin, Germany
| | - P Robin Hiesinger
- Division of Neurobiology of the Institute for Biology, Free University, Berlin, Germany
| | - Bassem A Hassan
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.
- Division of Neurobiology of the Institute for Biology, Free University, Berlin, Germany.
| |
Collapse
|
2
|
Long YL, Liu X, Wang G, Liu B, Meng XH, Liu Y. The first Chinese case with LCAEOD syndrome caused by mutation of TUBB4B gene. Int J Ophthalmol 2025; 18:753-756. [PMID: 40256034 PMCID: PMC11947535 DOI: 10.18240/ijo.2025.04.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 12/04/2024] [Indexed: 04/22/2025] Open
Affiliation(s)
- Yan-Ling Long
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401239, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xiao Liu
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401239, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Gang Wang
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Bo Liu
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiao-Hong Meng
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401239, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yong Liu
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401239, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
3
|
Wood LM, Moore JK. β3 accelerates microtubule plus end maturation through a divergent lateral interface. Mol Biol Cell 2025; 36:ar36. [PMID: 39813077 PMCID: PMC12005103 DOI: 10.1091/mbc.e24-08-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/26/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
β-tubulin isotypes exhibit similar sequences but different activities, suggesting that limited sequence divergence is functionally important. We investigated this hypothesis for TUBB3/β3, a β-tubulin linked to aggressive cancers and chemoresistance in humans. We created mutant yeast strains with β-tubulin alleles that mimic variant residues in β3 and find that residues at the lateral interface are sufficient to alter microtubule dynamics and response to microtubule targeting agents. In HeLa cells, β3 overexpression decreases the lifetime of microtubule growth, and this requires residues at the lateral interface. These microtubules exhibit a shorter region of EB binding at the plus end, suggesting faster lattice maturation, and resist stabilization by paclitaxel. Resistance requires the H1-S2 and H2-S3 regions at the lateral interface of β3. Our results identify the mechanistic origins of the unique activity of β3 tubulin and suggest that tubulin isotype expression may tune the rate of lattice maturation at growing microtubule plus ends in cells.
Collapse
Affiliation(s)
- Lisa M. Wood
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
4
|
Reichlmeir M, Duecker RP, Röhrich H, Key J, Schubert R, Abell K, Possemato AP, Stokes MP, Auburger G. The ataxia-telangiectasia disease protein ATM controls vesicular protein secretion via CHGA and microtubule dynamics via CRMP5. Neurobiol Dis 2024; 203:106756. [PMID: 39615799 DOI: 10.1016/j.nbd.2024.106756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024] Open
Abstract
The autosomal recessive disease ataxia-telangiectasia (A-T) presents with cerebellar degeneration, immunodeficiency, radiosensitivity, capillary dilatations, and pulmonary infections. Most symptoms outside the nervous system can be explained by failures of the disease protein ATM as a Ser/Thr-kinase to coordinate DNA damage repair. However, ATM in adult neurons has cytoplasmic localization and vesicle association, where its roles remain unclear. Here, we defined novel ATM protein targets in human neuroblastoma cells, and filtered initial pathogenesis events in ATM-null mouse cerebellum. Profiles of global proteome and phosphoproteomics - both direct ATM/ATR substrates and overall phosphorylation changes - confirmed previous findings for NBN, MRE11, MDC1, CHEK1, EIF4EBP1, AP3B2, PPP2R5C, SYN1 and SLC2A1. Even stronger downregulation of ATM/ATR substrate phosphopeptides after ATM-depletion was documented for CHGA, EXPH5, NBEAL2 and CHMP6 as key factors of protein secretion and endosome dynamics, as well as for CRMP5, DISP2, PHACTR1, PLXNC1, INA and TPX2 as neurite extension factors. Prominent effects on semaphorin-CRMP5-microtubule signals and ATM association with CRMP5 were validated. As a functional consequence, microtubules were stabilized, and neurite retraction ensued. The impact of ATM on secretory granules confirms previous ATM-null cerebellar transcriptome findings. This study provides the first link of A-T neural atrophy to growth cone collapse and aberrant microtubule dynamics.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| | - Ruth Pia Duecker
- Division for Allergy, Pneumatology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany.
| | - Hanna Röhrich
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany.
| | - Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| | - Ralf Schubert
- Division for Allergy, Pneumatology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany.
| | - Kathryn Abell
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA.
| | | | | | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Batiuk A, Höpfler M, Almeida AC, Teoh En-Jie D, Vadas O, Vartholomaiou E, Hegde RS, Lin Z, Gasic I. Soluble αβ-tubulins reversibly sequester TTC5 to regulate tubulin mRNA decay. Nat Commun 2024; 15:9963. [PMID: 39551769 PMCID: PMC11570694 DOI: 10.1038/s41467-024-54036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Microtubules, built from heterodimers of α- and β-tubulins, control cell shape, mediate intracellular transport, and power cell division. The concentration of αβ-tubulins is tightly controlled through a posttranscriptional mechanism involving selective and regulated degradation of tubulin-encoding mRNAs. Degradation is initiated by TTC5, which recognizes tubulin-synthesizing ribosomes and recruits downstream effectors to trigger mRNA deadenylation. Here, we investigate how cells regulate TTC5 activity. Biochemical and structural proteomic approaches reveal that under normal conditions, soluble αβ-tubulins bind to and sequester TTC5, preventing it from engaging nascent tubulins at translating ribosomes. We identify the flexible C-terminal tail of TTC5 as a molecular switch, toggling between soluble αβ-tubulin-bound and nascent tubulin-bound states. Loss of sequestration by soluble αβ-tubulins constitutively activates TTC5, leading to diminished tubulin mRNA levels and compromised microtubule-dependent chromosome segregation during cell division. Our findings provide a paradigm for how cells regulate the activity of a specificity factor to adapt posttranscriptional regulation of gene expression to cellular needs.
Collapse
Affiliation(s)
- Alina Batiuk
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Markus Höpfler
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Ana C Almeida
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Deryn Teoh En-Jie
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Oscar Vadas
- Proteins, Peptides and RNA to Protein Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Zhewang Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Ivana Gasic
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
Pandey S, Gupta S. Exploring laccase: a sustainable enzymatic solution for the paper recycling domain. Arch Microbiol 2024; 206:211. [PMID: 38602547 DOI: 10.1007/s00203-024-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The global advocacy of resource conservation and waste management emphasizes the significance of sustainable practices, particularly in sectors such as paper manufacturing and recycling. Currently, conventional chemical methods are predominant for paper production, necessitating the use of substantial amount of toxic chemicals. This chemical-intensive approach compromises the recycled fiber quality, generates hazardous effluent causing serious ecological threats which triggers regulatory complexities for the mills. To address these challenges modern research suggests adopting sustainable eco-friendly practices such as employing enzymes. This review aims to explore the applicability of 'laccase' enzyme for paper recycling, investigating its properties and contribution to improved recycling practices. By delving into the potential application of laccase integration into the papermaking process, this article sheds light on the limitations inherent in traditional methods surmounted within both research and translational landscapes. Culture and process optimization studies, supporting the technological improvements and the future prospects have been documented.
Collapse
Affiliation(s)
- Sheetal Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India.
| |
Collapse
|
7
|
Isaković J, Slatković F, Jagečić D, Petrović DJ, Mitrečić D. Pulsating Extremely Low-Frequency Electromagnetic Fields Influence Differentiation of Mouse Neural Stem Cells towards Astrocyte-like Phenotypes: In Vitro Pilot Study. Int J Mol Sci 2024; 25:4038. [PMID: 38612847 PMCID: PMC11012476 DOI: 10.3390/ijms25074038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Even though electromagnetic fields have been reported to assist endogenous neurogenesis, little is known about the exact mechanisms of their action. In this pilot study, we investigated the effects of pulsating extremely low-frequency electromagnetic fields on neural stem cell differentiation towards specific phenotypes, such as neurons and astrocytes. Neural stem cells isolated from the telencephalic wall of B6(Cg)-Tyrc-2J/J mouse embryos (E14.5) were randomly divided into three experimental groups and three controls. Electromagnetic field application setup included a solenoid placed within an incubator. Each of the experimental groups was exposed to 50Hz ELF-EMFs of varied strengths for 1 h. The expression of each marker (NES, GFAP, β-3 tubulin) was then assessed by immunocytochemistry. The application of high-strength ELF-EMF significantly increased and low-strength ELF-EMF decreased the expression of GFAP. A similar pattern was observed for β-3 tubulin, with high-strength ELF-EMFs significantly increasing the immunoreactivity of β-3 tubulin and medium- and low-strength ELF-EMFs decreasing it. Changes in NES expression were observed for medium-strength ELF-EMFs, with a demonstrated significant upregulation. This suggests that, even though ELF-EMFs appear to inhibit or promote the differentiation of neural stem cells into neurons or astrocytes, this effect highly depends on the strength and frequency of the fields as well as the duration of their application. While numerous studies have demonstrated the capacity of EMFs to guide the differentiation of NSCs into neuron-like cells or β-3 tubulin+ neurons, this is the first study to suggest that ELF-EMFs may also steer NSC differentiation towards astrocyte-like phenotypes.
Collapse
Affiliation(s)
| | - Filip Slatković
- Omnion Research International d.o.o., 10000 Zagreb, Croatia;
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Dražen Juraj Petrović
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Genos d.o.o., Laboratory for Glycobiology, 10000 Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Zhang X, Zhou Y, Chang X, Wu Q, Liu Z, Liu R. Tongyang Huoxue decoction (TYHX) ameliorating hypoxia/reoxygenation-induced disequilibrium of calcium homeostasis via regulating β-tubulin in rabbit sinoatrial node cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117006. [PMID: 37544340 DOI: 10.1016/j.jep.2023.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE β-tubulin is a skeletal protein of sinoatrial node cells (SANCs) that maintains the physiological structure of SANCs and inhibits calcium overload. Tongyang Huoxue decoction (TYHX) is widely used to treat sick sinus syndrome (SSS) owing to its effects on calcium channels regulation and SANCs protection. AIM OF THE STUDY This study focuses on the mechanism of TYHX in improving the hypoxia/reoxygenation (H/R)-induced disequilibrium of calcium homeostasis in SANCs via regulating β-tubulin. MATERIALS AND METHODS Real-Time PCR (RT-PCR) and Western Blot were adopted to detect the mRNA and protein expression levels of calcium channel regulatory molecules. Laser confocal method was employed to examine β-tubulin structure and fluorescence expression levels in SANCs, as well as calcium wave and calcium release levels. RESULTS It was found that the fluorescence expression level decreased and the β-tubulin structure of SANCs was damaged after H/R treatment. The mRNA and protein expression levels of SERCA2a/CaV1.3/NCX and β-tubulin decreased, while the mRNA and protein expression of RyR2 increased. The results of calcium wave and calcium transient experiments showed that the fluorescence expression level of Ca2+ increased and calcium overload occurred in SANCs. After treatment with TYHX, the mRNA and protein expression levels of SERCA2a/CaV1.3/NCX and β-tubulin increased, while the mRNA and protein expression levels of RyR2 decreased and the cell structure was restored. Interestingly, the regulation of TYHX on calcium homeostasis was further enhanced after Ad-β-tubulin treatment and counteracted after siRNA-β-tubulin treatment. These results suggest that TYHX could maintain calcium homeostasis via regulating β-tubulin, thus protecting against H/R-induced SANCs injury, which may be a new target for SSS treatment.
Collapse
Affiliation(s)
- Xinai Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yutong Zhou
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiming Liu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Riuxiu Liu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Marien J, Prévost C, Sacquin-Mora S. It Takes Tau to Tango: Investigating the Fuzzy Interaction between the R2-Repeat Domain and Tubulin C-Terminal Tails. Biochemistry 2023; 62:2492-2502. [PMID: 37499261 DOI: 10.1021/acs.biochem.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The microtubule-associated protein (MAP) tau plays a key role in the regulation of microtubule assembly and spatial organization. Tau hyperphosphorylation affects its binding on the tubulin surface and has been shown to be involved in several pathologies such as Alzheimer's disease. As the tau binding site on the microtubule lays close to the disordered and highly flexible tubulin C-terminal tails (CTTs), these are likely to impact the tau-tubulin interaction. Since the disordered tubulin CTTs are missing from the available experimental structures, we used homology modeling to build two complete models of tubulin heterotrimers with different isotypes for the β-tubulin subunit (βI/αI/βI and βIII/αI/βIII). We then performed long timescale classical Molecular Dynamics simulations for the tau-R2/tubulin assembly (in systems with and without CTTs) and analyzed the resulting trajectories to obtain a detailed view of the protein interface in the complex and the impact of the CTTs on the stability of this assembly. Additional analyses of the CTT mobility in the presence, or in the absence, of tau also highlight how tau might modulate the CTT activity as hooks that are involved in the recruitment of several MAPs. In particular, we observe a wrapping phenomenon, where the β-tubulin CTTs form a loop over tau-R2, thus stabilizing its interaction with the tubulin surface and simultaneously reducing the CTT availability for interactions with other MAPs.
Collapse
Affiliation(s)
- Jules Marien
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Chantal Prévost
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sophie Sacquin-Mora
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
10
|
Cwiklinski K, Dalton JP. Omics tools enabling vaccine discovery against fasciolosis. Trends Parasitol 2022; 38:1068-1079. [PMID: 36270885 DOI: 10.1016/j.pt.2022.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
In the past decade significant advances in our understanding of liver fluke biology have been made through in-depth interrogation and analysis of evolving Fasciola hepatica and Fasciola gigantica omics datasets. This information is crucial for developing novel control strategies, particularly vaccines necessitated by the global spread of anthelmintic resistance. Distilling them down to a manageable number of testable vaccines requires combined rational, empirical, and collaborative approaches. Despite a lack of clear outstanding vaccine candidate(s), we must continue to identify salient parasite-host interacting molecules, likely in the secretory products, tegument, or extracellular vesicles, and perform robust trials especially in livestock, using present and emerging vaccinology technologies to discover that elusive liver fluke vaccine. Omics tools are bringing this prospect ever closer.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health (MPL), Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|