1
|
Kovalski JR, Sarioglu G, Subramanyam V, Hernandez G, Rademaker G, Oses-Prieto JA, Slota M, Mohan N, Yiakis K, Liu I, Wen KW, Kim GE, Miglani S, Burlingame AL, Goodarzi H, Perera RM, Ruggero D. Functional screen identifies RBM42 as a mediator of oncogenic mRNA translation specificity. Nat Cell Biol 2025; 27:518-529. [PMID: 39905246 DOI: 10.1038/s41556-024-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025]
Abstract
Oncogenic protein dosage is tightly regulated to enable cancer formation but how this is regulated by translational control remains unknown. The Myc oncogene is a paradigm of an exquisitely regulated oncogene and a driver of pancreatic ductal adenocarcinoma (PDAC). Here we use a CRISPR interference screen in PDAC cells to identify activators of selective MYC translation. The top hit, the RNA-binding protein RBM42, is highly expressed in PDAC and predicts poor survival. We show that RBM42 binds and selectively regulates the translation of MYC and a precise suite of pro-oncogenic transcripts, including JUN and EGFR. Mechanistically, we find that RBM42 binds and remodels the MYC 5' untranslated region structure, facilitating the formation of the translation pre-initiation complex. Importantly, RBM42 is necessary for PDAC tumorigenesis in a Myc-dependent manner in vivo. This work transforms the understanding of the translational code in cancer and illuminates therapeutic openings to target the expression of oncogenes.
Collapse
Affiliation(s)
- Joanna R Kovalski
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Goksu Sarioglu
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Grace Hernandez
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Gilles Rademaker
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Macey Slota
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Nimmy Mohan
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Kaylee Yiakis
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Isabelle Liu
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Kwun Wah Wen
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Grace E Kim
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Sohit Miglani
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Rushika M Perera
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Davide Ruggero
- Department of Urology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Kovalski JR, Sarioglu G, Subramanyam V, Hernandez G, Rademaker G, Oses-Prieto JA, Slota M, Mohan N, Yiakis K, Liu I, Wen KW, Kim GE, Miglani S, Burlingame AL, Goodarzi H, Perera RM, Ruggero D. Functional screen for mediators of onco-mRNA translation specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617637. [PMID: 39416102 PMCID: PMC11482963 DOI: 10.1101/2024.10.10.617637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Oncogenic protein dosage is tightly regulated to enable cancer cells to adapt and survive. Whether this is regulated at the level of translational control and the key factors in cis and trans remain unknown. The Myc oncogene is a central paradigm of an exquisitely regulated oncogene and a major driver of pancreatic ductal adenocarcinoma (PDAC). Using a functional genome-wide CRISPRi screen in PDAC cells, we identified activators of selective MYC translation through its 5' untranslated region (5'UTR) and validated four RNA binding proteins (RBPs), including epitranscriptome modifiers. Among these RBPs, our top hit was RBM42, which is highly expressed in PDAC and predicts poor survival. Combining polysome sequencing and CLIP-seq analyses, we find that RBM42 binds and selectively regulates the translation of MYC and a precise, yet vital suite of pro-oncogenic transcripts, including JUN and EGFR . Mechanistically, employing IP-mass spectrometry analysis, we find that RMB42 is a novel ribosome-associated protein (RAP). Using DMS-Seq and mutagenesis analysis, we show that RBM42 directly binds and remodels the MYC 5'UTR RNA structure, facilitating the formation of the translation pre-initiation complex. Importantly, RBM42 is necessary for human PDAC cell growth and fitness and PDAC tumorigenesis in xenograft mouse models in a Myc-dependent manner in vivo . In PDAC patient samples, RBM42 expression is correlated with Myc protein levels and transcriptional activity. This work transforms our understanding of the translational code in cancer and offers a new therapeutic opening to target the expression of oncogenes.
Collapse
|
3
|
Jansen J, Bohnsack KE, Böhlken-Fascher S, Bohnsack MT, Dobbelstein M. The ribosomal protein L22 binds the MDM4 pre-mRNA and promotes exon skipping to activate p53 upon nucleolar stress. Cell Rep 2024; 43:114610. [PMID: 39116201 DOI: 10.1016/j.celrep.2024.114610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
The tumor suppressor p53 and its antagonists MDM2 and MDM4 integrate stress signaling. For instance, dysbalanced assembly of ribosomes in nucleoli induces p53. Here, we show that the ribosomal protein L22 (RPL22; eL22), under conditions of ribosomal and nucleolar stress, promotes the skipping of MDM4 exon 6. Upon L22 depletion, more full-length MDM4 is maintained, leading to diminished p53 activity and enhanced cellular proliferation. L22 binds to specific RNA elements within intron 6 of MDM4 that correspond to a stem-loop consensus, leading to exon 6 skipping. Targeted deletion of these intronic elements largely abolishes L22-mediated exon skipping and re-enables cell proliferation, despite nucleolar stress. L22 also governs alternative splicing of the L22L1 (RPL22L1) and UBAP2L mRNAs. Thus, L22 serves as a signaling intermediate that integrates different layers of gene expression. Defects in ribosome synthesis lead to specific alternative splicing, ultimately triggering p53-mediated transcription and arresting cell proliferation.
Collapse
Affiliation(s)
- Jennifer Jansen
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Susanne Böhlken-Fascher
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
4
|
Liao Y, Andronov L, Liu X, Lin J, Guerber L, Lu L, Agote-Arán A, Pangou E, Ran L, Kleiss C, Qu M, Schmucker S, Cirillo L, Zhang Z, Riveline D, Gotta M, Klaholz BP, Sumara I. UBAP2L ensures homeostasis of nuclear pore complexes at the intact nuclear envelope. J Cell Biol 2024; 223:e202310006. [PMID: 38652117 PMCID: PMC11040503 DOI: 10.1083/jcb.202310006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Assembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a role of ubiquitin-associated protein 2-like (UBAP2L) in the assembly and stability of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells. UBAP2L localizes to the nuclear pores and facilitates the formation of the Y-complex, an essential scaffold component of the NPC, and its localization to the NE. UBAP2L promotes the interaction of the Y-complex with POM121 and Nup153, the critical upstream factors in a well-defined sequential order of Nups assembly onto NE during interphase. Timely localization of the cytoplasmic Nup transport factor fragile X-related protein 1 (FXR1) to the NE and its interaction with the Y-complex are likewise dependent on UBAP2L. Thus, this NPC biogenesis mechanism integrates the cytoplasmic and the nuclear NPC assembly signals and ensures efficient nuclear transport, adaptation to nutrient stress, and cellular proliferative capacity, highlighting the importance of NPC homeostasis at the intact NE.
Collapse
Affiliation(s)
- Yongrong Liao
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Leonid Andronov
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Department of Integrated Structural Biology, Centre for Integrative Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Xiaotian Liu
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Junyan Lin
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Lucile Guerber
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Linjie Lu
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Arantxa Agote-Arán
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Evanthia Pangou
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Li Ran
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Charlotte Kleiss
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Mengdi Qu
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Stephane Schmucker
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Luca Cirillo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Zhirong Zhang
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Daniel Riveline
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Bruno P. Klaholz
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Department of Integrated Structural Biology, Centre for Integrative Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Izabela Sumara
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Tuminello S, Nguyen E, Durmus N, Alptekin R, Yilmaz M, Crisanti MC, Snuderl M, Chen Y, Shao Y, Reibman J, Taioli E, Arslan AA. World Trade Center Exposure, DNA Methylation Changes, and Cancer: A Review of Current Evidence. EPIGENOMES 2023; 7:31. [PMID: 38131903 PMCID: PMC10742700 DOI: 10.3390/epigenomes7040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Known carcinogens in the dust and fumes from the destruction of the World Trade Center (WTC) towers on 9 November 2001 included metals, asbestos, and organic pollutants, which have been shown to modify epigenetic status. Epigenome-wide association analyses (EWAS) using uniform (Illumina) methodology have identified novel epigenetic profiles of WTC exposure. Methods: We reviewed all published data, comparing differentially methylated gene profiles identified in the prior EWAS studies of WTC exposure. This included DNA methylation changes in blood-derived DNA from cases of cancer-free "Survivors" and those with breast cancer, as well as tissue-derived DNA from "Responders" with prostate cancer. Emerging molecular pathways related to the observed DNA methylation changes in WTC-exposed groups were explored and summarized. Results: WTC dust exposure appears to be associated with DNA methylation changes across the genome. Notably, WTC dust exposure appears to be associated with increased global DNA methylation; direct dysregulation of cancer genes and pathways, including inflammation and immune system dysregulation; and endocrine system disruption, as well as disruption of cholesterol homeostasis and lipid metabolism. Conclusion: WTC dust exposure appears to be associated with biologically meaningful DNA methylation changes, with implications for carcinogenesis and development of other chronic diseases.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
| | - Emelie Nguyen
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Nedim Durmus
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramazan Alptekin
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Muhammed Yilmaz
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Chen
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Alan A. Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
6
|
Liu Y, Yao Z, Lian G, Yang P. Biomolecular phase separation in stress granule assembly and virus infection. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1099-1118. [PMID: 37401177 PMCID: PMC10415189 DOI: 10.3724/abbs.2023117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 07/05/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a crucial mechanism for cellular compartmentalization. One prominent example of this is the stress granule. Found in various types of cells, stress granule is a biomolecular condensate formed through phase separation. It comprises numerous RNA and RNA-binding proteins. Over the past decades, substantial knowledge has been gained about the composition and dynamics of stress granules. SGs can regulate various signaling pathways and have been associated with numerous human diseases, such as neurodegenerative diseases, cancer, and infectious diseases. The threat of viral infections continues to loom over society. Both DNA and RNA viruses depend on host cells for replication. Intriguingly, many stages of the viral life cycle are closely tied to RNA metabolism in human cells. The field of biomolecular condensates has rapidly advanced in recent times. In this context, we aim to summarize research on stress granules and their link to viral infections. Notably, stress granules triggered by viral infections behave differently from the canonical stress granules triggered by sodium arsenite (SA) and heat shock. Studying stress granules in the context of viral infections could offer a valuable platform to link viral replication processes and host anti-viral responses. A deeper understanding of these biological processes could pave the way for innovative interventions and treatments for viral infectious diseases. They could potentially bridge the gap between basic biological processes and interactions between viruses and their hosts.
Collapse
Affiliation(s)
- Yi Liu
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Zhiying Yao
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Guiwei Lian
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Peiguo Yang
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| |
Collapse
|