1
|
Wang X, Qu L, Wen Z, Wu Z, Xue Y, Yang X, Yuan Z, Guo Y, Lin X. PANoptosis-related genes in the prognosis and immune landscape of hepatocellular carcinoma. Immunol Res 2025; 73:51. [PMID: 39946053 PMCID: PMC11825605 DOI: 10.1007/s12026-025-09603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
In hepatocellular carcinoma (HCC) individuals, the influence of numerous variables on the HCC prognosis has gained widespread recognition. Nevertheless, there remains a need for further elucidation regarding the underlying mechanism of PANoptosis-related genes (PRGs) on HCC. A consensus clustering approach, based on the TCGA-LIHC data, was used to identify specific subtypes linked to PANoptosis in this study. Next, a signature consisting of predictive differentially expressed genes for these subtypes was established using a least absolute shrinkage and selection operator (LASSO) regression analysis. Additionally, the reliability of the signature was confirmed through verification investigations using the data from the ICGC database and TCGA-LIHC. In the end, we developed a nomogram to enhance the clinical effectiveness of our prediction tool. PRG signature in this study has been highly related to the prognosis of individuals diagnosed with HCC, which was established with six genes. Also, this signature and clinicopathological features were put together to create a nomogram. Interestingly, the forecasting efficiency of this combination approach is better than other prediction models in the reported literature. In addition, an examination of the immunological surroundings indicates that the group with low risk exhibited elevated ESTIMATE score, ImmuneScores, and StromalScores. More, significant differences in infiltrating immune cells and the expression levels of immune-related genes were found between the two groups. In HCC patients, the PRG signature exhibits potential as a biomarker, offering a significant point of reference for tailoring individual therapy.
Collapse
Affiliation(s)
- Xiaowu Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| | - Liangchen Qu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| | - Zhikai Wen
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhixuan Wu
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yuxiang Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China
| | - Xuejia Yang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ziwei Yuan
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yangyang Guo
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China.
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang Province, China.
| | - Xingcheng Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China.
| |
Collapse
|
2
|
Song Z, Zhang J, Sun Y, Jiang Z, Liu X. Establishment and validation of an immune infiltration predictive model for ovarian cancer. BMC Med Genomics 2023; 16:227. [PMID: 37759229 PMCID: PMC10538244 DOI: 10.1186/s12920-023-01657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The most prevalent mutation in ovarian cancer is the TP53 mutation, which impacts the development and prognosis of the disease. We looked at how the TP53 mutation associates the immunophenotype of ovarian cancer and the prognosis of the disease. METHODS We investigated the state of TP53 mutations and expression profiles in culturally diverse groups and datasets and developed an immune infiltration predictive model relying on immune-associated genes differently expressed between TP53 WT and TP53 MUT ovarian cancer cases. We aimed to construct an immune infiltration predictive model (IPM) to enhance the prognosis of ovarian cancer and investigate the impact of the IPM on the immunological microenvironment. RESULTS TP53 mutagenesis affected the expression of seventy-seven immune response-associated genes. An IPM was implemented and evaluated on ovarian cancer patients to distinguish individuals with low- and high-IPM subgroups of poor survival. For diagnostic and therapeutic use, a nomogram is thus created. According to pathway enrichment analysis, the pathways of the human immune response and immune function abnormalities were the most associated functions and pathways with the IPM genes. Furthermore, patients in the high-risk group showed low proportions of macrophages M1, activated NK cells, CD8+ T cells, and higher CTLA-4, PD-1, PD-L1, and TIM-3 than patients in the low-risk group. CONCLUSIONS The IPM model may identify high-risk patients and integrate other clinical parameters to predict their overall survival, suggesting it is a potential methodology for optimizing ovarian cancer prognosis.
Collapse
Affiliation(s)
- Zhenxia Song
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China
| | - Jingwen Zhang
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China
| | - Yue Sun
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China
| | - Zhongmin Jiang
- Department of Pathology, Tian Jin Fifth's Central Hospital, #41 Zhejiang Road, Binhai District, Tianjin, 300450, P. R. China
| | - Xiaoning Liu
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China.
| |
Collapse
|
3
|
Zhang D, Li Y, Du C, Sang L, Liu L, Li Y, Wang F, Fan W, Tang P, Zhang S, Chen D, Wang Y, Wang X, Xie X, Jiang Z, Song Y, Guo R. Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med 2022; 20:363. [PMID: 35962439 PMCID: PMC9373312 DOI: 10.1186/s12967-022-03566-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Approximately 8-9% of the world's population is affected by autoimmune diseases, and yet the mechanism of autoimmunity trigger is largely understudied. Two unique cell death modalities, ferroptosis and pyroptosis, provide a new perspective on the mechanisms leading to autoimmune diseases, and development of new treatment strategies. METHODS Using scRNA-seq datasets, the aberrant trend of ferroptosis and pyroptosis-related genes were analyzed in several representative autoimmune diseases (psoriasis, atopic dermatitis, vitiligo, multiple sclerosis, systemic sclerosis-associated interstitial lung disease, Crohn's disease, and experimental autoimmune orchitis). Cell line models were also assessed using bulk RNA-seq and qPCR. RESULTS A substantial difference was observed between normal and autoimmune disease samples involving ferroptosis and pyroptosis. In the present study, ferroptosis and pyroptosis showed an imbalance in different keratinocyte lineages of psoriatic skinin addition to a unique pyroptosis-sensitive keratinocyte subset in atopic dermatitis (AD) skin. The results also revealed that pyroptosis and ferroptosis are involved in epidermal melanocyte destruction in vitiligo. Aberrant ferroptosis has been detected in multiple sclerosis, systemic sclerosis-associated interstitial lung disease, Crohn's disease, and autoimmune orchitis. Cell line models adopted in the study also identified pro-inflammatory factors that can drive changes in ferroptosis and pyroptosis. CONCLUSION These results provide a unique perspective on the involvement of ferroptosis and pyroptosis in the pathological process of autoimmune diseases at the scRNA-seq level. IFN-γ is a critical inducer of pyroptosis sensitivity, and has been identified in two cell line models.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yadan Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, Henan, China
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lina Sang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjuan Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ping Tang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sidong Zhang
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Chen
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanmei Wang
- Department of Hematology, Zhengzhou People's Hospital, Zhengzhou, Henan, China
| | - Xiaoyi Wang
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|