1
|
Shammas T, Peiris MN, Meyer AN, Donoghue DJ. BCR-ABL: The molecular mastermind behind chronic myeloid leukemia. Cytokine Growth Factor Rev 2025; 83:45-58. [PMID: 40360311 DOI: 10.1016/j.cytogfr.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
The chromosomal translocation t(9;22)(q34;q11), known as the Philadelphia (Ph) chromosome, results in the BCR-ABL gene fusion which gives rise to Chronic Myeloid Leukemia (CML), a slowly progressing hematopoietic cancer that begins in the bone marrow of the patient. Making up about 15 % of all new leukemia cases, CML remains a critical focus of cancer research and treatment due to its distinctive genetic hallmark, the BCR-ABL fusion gene. The BCR-ABL fusion protein is a constitutively active tyrosine kinase which signals to multiple pathways including the Ras/MAPK, PI3K/AKT, JAK/STAT and NF-kappaB pathways which promote uncontrolled cell proliferation and survival. While multiple tyrosine kinase inhibitors (TKIs) are used to specifically target the fusion in the treatment of CML, new therapies are becoming available to overcome the resistance that occurs during TKI treatments of the disease. The discovery of the Philadelphia chromosome and the subsequent elucidation of the BCR-ABL fusion protein have since become a paradigm for understanding the genetic basis of cancer and developing precision medicine approaches. This review highlights the etiology and historical discovery of the BCR-ABL fusion, recent advances in understanding its regulatory mechanisms, and emerging strategies for its therapeutic targeting.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Protein Kinase Inhibitors/therapeutic use
- Animals
- Signal Transduction
- Philadelphia Chromosome
Collapse
Affiliation(s)
- Tara Shammas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Malalage N Peiris
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA; UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, USA.
| |
Collapse
|
2
|
Yasir M, Choe J, Hassan M, Kloczkowski A, Chun W. Recent advances and future perspectives in small molecule JAK2 inhibitors. Future Med Chem 2025:1-17. [PMID: 40392133 DOI: 10.1080/17568919.2025.2507564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
The Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) signaling pathway is essential for controlling immune function, blood cell formation, and cell growth. Dysregulation of this pathway is implicated in various diseases, including hematologic malignancies, autoimmune disorders, and chronic inflammatory conditions. This review provides a comprehensive overview of the structural and functional aspects of JAK/STAT signaling, with a particular focus on the role of JAK2. This manuscript explores the primary regulators of the JAK/STAT pathway, such as Suppressors Of Cytokine Signaling (SOCS), Protein Inhibitors of Activated STATs (PIAS), and Protein Tyrosine Phosphatases (PTPs), which play a crucial role in maintaining cellular balance and stability. Additionally, the therapeutic landscape of JAK2 inhibitors is explored, covering both approved and investigational drugs, including their mechanisms of action, efficacy, and safety profiles. Emerging strategies such as drug repositioning using computational approaches and experimental validation are also highlighted. By integrating insights from molecular docking studies, machine learning models, and kinase assays, this review emphasizes the potential of JAK2 inhibitors in disease management.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jongseon Choe
- Department of Microbiology and Immunology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Sreedharanunni S, Thakur V, Balakrishnan A, Sachdeva MUS, Kaur P, Raina S, Jamwal M, Singh C, Sharma P, Mallik N, Naseem S, Rastogi P, Jain A, Prakash G, Khadwal A, Malhotra P, Das R. Effective Utilization of a Customized Targeted Hybrid Capture RNA Sequencing in the Routine Molecular Categorization of Adolescent and Adult B-Lineage Acute Lymphoblastic Leukemia: A Real-World Experience. Mol Diagn Ther 2025; 29:407-418. [PMID: 40186692 DOI: 10.1007/s40291-025-00779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2025] [Indexed: 04/07/2025]
Abstract
INTRODUCTION Recent World Health Organization (WHO) and International Consensus Classifications have introduced numerous molecular entities in B-lineage acute lymphoblastic leukemia (B-ALL), necessitating comprehensive genomic characterization by detecting gene fusions, expression, mutations, and exon deletions. While whole-genome plus transcriptome sequencing is the ideal strategy, it remains cost-prohibitive for routine use. This study reports a cost-effective and reasonably efficient alternate approach integrating a customized targeted hybrid capture RNA sequencing (RNAseq) into the routine workup. METHODOLOGY A total of 95 consecutive adolescent/adult B-ALL cases negative for common chimeric gene fusions (CGF) (BCR::ABL1, KMT2A::AFF1, TCF3::PBX1, and ETV6::RUNX1) were analyzed using a customized 69-gene targeted RNAseq panel. In total, three fusion detection pipelines, the Trinity Cancer Transcriptome Analysis Toolkit (CTAT) Mutations pipeline, and the Toblerone alignment tool were employed, and the results were compared with fluorescence in situ hybridization (FISH)/multiplex ligation-dependent probe amplification (MLPA) testing. RESULTS RNAseq identified fusions in 43% of cases (including BCR::ABL1-like: 15.8% and IGH::DUX4: 10.5%), demonstrating superior detection of cryptic intrachromosomal rearrangements. Somatic variants were detected in 30% of cases (including rat sarcoma (RAS) pathway and Janus kinase (JAK)-signal transducers and activators of transcription (STAT) variants in 18% and 5.3% respectively), and IKZF1 deletions were detected in 25% (77% concordance with MLPA). The integration of targeted RNAseq and comprehensive bioinformatic analysis with flow-cytometry-based ploidy analysis and FISH-based IGH rearrangements helped categorize 79% of common CGF-negative B-ALL. The BCR::ABL1/BCR::ABL1-like group showed a higher frequency of pathogenic IKZF1 deletions (50% versus 21.7%; p = 0.011), measurable residual disease (92% versus 51%; p = 0.009), and poorer overall survival (8.6 versus 22.8 months; p = 0.07). DISCUSSION AND CONCLUSIONS Effective utilization of RNAseq data by comprehensive bioinformatic analysis to test fusions, mutations, and deletions, supported by only minimal supplementary FISH testing, provides a practical, cost-effective solution for the molecular characterization of B-ALL in real-world scenarios until a single alternative and cost-effective test is available.
Collapse
Affiliation(s)
- Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Venus Thakur
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anand Balakrishnan
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Prabhjot Kaur
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sudhanshi Raina
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manu Jamwal
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Charanpreet Singh
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Praveen Sharma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Nabhajit Mallik
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Shano Naseem
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pulkit Rastogi
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Arihant Jain
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gaurav Prakash
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Reena Das
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
4
|
Chuang S, Chu A, Hurtado R, Tirado CA. Integrative Insights into Philadelphia-like B-Cell Acute Lymphoblastic Leukemia: A Genetic and Molecular Landscape. Diagnostics (Basel) 2025; 15:385. [PMID: 39941315 PMCID: PMC11816510 DOI: 10.3390/diagnostics15030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Philadelphia-like chromosome acute lymphoblastic leukemia (Ph-like ALL) is a new subtype of B-ALL that was discovered in 2009 and recognized in the 2016 revision of the World Health Organization criteria under the classification of myeloid neoplasms and acute leukemia. This new subtype has an extremely poor prognosis compared to that for other subtypes of ALL, with a 41% five-year overall survival (OS) rate. Ph-like ALL is chemoresistant, with a high minimum residual disease (MRD) level after induction therapy, and it is associated with a high relapse rate. Clinical trials are currently being conducted to study the effectiveness of specific tyrosine kinase inhibitors against different genetic alterations in Ph-like ALL patients and the effect of allogeneic hematopoietic cell transplants (allo-HCT) on treatments. This review summarizes the current findings on Ph-like ALL, focusing on its molecular landscape and clinical implications.
Collapse
Affiliation(s)
- Stacey Chuang
- The International Circle of Genetic Studies Project, Stony Brook Chapter, Stony Brook, NY 11794, USA; (S.C.); (A.C.); (R.H.)
| | - Alexandra Chu
- The International Circle of Genetic Studies Project, Stony Brook Chapter, Stony Brook, NY 11794, USA; (S.C.); (A.C.); (R.H.)
| | - Rodrigo Hurtado
- The International Circle of Genetic Studies Project, Stony Brook Chapter, Stony Brook, NY 11794, USA; (S.C.); (A.C.); (R.H.)
| | - Carlos A. Tirado
- The International Circle of Genetic Studies Project, Stony Brook Chapter, Stony Brook, NY 11794, USA; (S.C.); (A.C.); (R.H.)
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Wang M, Gao F, Zhang H, Zheng W. Endometrial polyps with bizarre stromal cells: a Benign or a low-grade lesion? BMC Womens Health 2025; 25:51. [PMID: 39910589 PMCID: PMC11796169 DOI: 10.1186/s12905-025-03557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Polyps containing bizarre stromal cells are occasionally observed in the lower gynecologic tract, including the vagina, cervix, and endometrium, predominantly in perimenopausal or postmenopausal patients. These cases have traditionally been considered benign without subsequent recurrence or malignancy. CASE PRESENTATION We describe a rare instance of a rapid enlarging endometrial polyp characterized by atypical stromal cells in a 76-year-old postmenopausal woman, who presented with vaginal bleeding. Histologically, the polyp was noted for its abundance of atypical stromal cells interspersed among thick-walled vascular channels. Higher magnification revealed eosinophilic cytoplasm in the stromal cells, which exhibited both mono- and multinucleation, hyperchromasia with coarse chromatin, and an absence of conspicuous nucleoli and mitotic figures. A consensus among two of three consulting expert gynecological pathologists supported a benign endometrial polyp diagnosis; however, one pathologist raised the possibility of adenosarcoma, highlighting the diagnostic dilemma these unique lesions present. Despite a hysterectomy recommendation, the patient chose monitoring over immediate surgery. Persistent vaginal bleeding led to her return six months later, whereupon a 7-cm polypoid lesion in the endometrial cavity was found and removed via hysterectomy. The histopathology mirrored the initial findings, showing no myometrial invasion, prompting a re-evaluation of the presumed benign nature of the polyp given its rapid growth. Remarkably, RNA sequencing analysis of the polyp detected a JAK2::NFIB gene fusion, a novel finding for endometrial polyps with atypical stromal cells, the clinical implications of which remain to be elucidated. CONCLUSION The rapid recurrence of the polyp within six months raises new questions about the true biological nature of these entities and the relevance of gene fusions like JAK2::NFIB in their pathogenesis, meriting further investigation.
Collapse
Affiliation(s)
- Musen Wang
- Department of Pathology, Dong E County People's Hospital of Shangdong Province, LiaoCheng, 252200, China
| | - Fei Gao
- Department of Pathology, Dong E County People's Hospital of Shangdong Province, LiaoCheng, 252200, China
| | - Hongkai Zhang
- Department of Pathology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Wenxin Zheng
- Department of Pathology, Obstetrics and Gynecology, Simon Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
6
|
Tran TH, Tasian SK. How I treat Philadelphia chromosome-like acute lymphoblastic leukemia in children, adolescents, and young adults. Blood 2025; 145:20-34. [PMID: 38657263 DOI: 10.1182/blood.2023023153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) represents a high-risk B-lineage ALL subtype characterized by adverse clinical features and poor relapse-free survival despite risk-adapted multiagent chemotherapy regimens. The advent of next-generation sequencing has unraveled the diversity of kinase-activating genetic drivers in Ph-like ALL that are potentially amenable to personalized molecularly-targeted therapies. Based upon robust preclinical data and promising case series of clinical activity of tyrosine kinase inhibitor (TKI)-based treatment in adults and children with relevant genetic Ph-like ALL subtypes, several clinical trials have investigated the efficacy of JAK- or ABL-directed TKIs in cytokine receptor-like factor 2 (CRLF2)/JAK pathway-mutant or ABL-class Ph-like ALL, respectively. The final results of these trials are pending, and standard-of-care therapeutic approaches for patients with Ph-like ALL have yet to be defined. In this How I Treat perspective, we review recent literature to guide current evidence-based treatment recommendations via illustrative clinical vignettes of children, adolescents, and young adults with newly diagnosed or relapsed/refractory Ph-like ALL, and we further highlight open and soon-to-open trials investigating immunotherapy and TKIs specifically for this high-risk patient population.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
7
|
Iacobucci I, Papayannidis C. SOHO State of the Art Updates and Next Questions | Approach to BCR::ABL1-Like Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:13-22. [PMID: 39217000 DOI: 10.1016/j.clml.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Philadelphia-like (Ph-like) or BCR::ABL1-like acute lymphoblastic leukemia (ALL) is a common high-risk subtype of B-cell precursor ALL (B-ALL) characterized by a diverse range of genetic alterations that challenge diagnose and converge on distinct kinase and cytokine receptor-activated gene expression profiles, resembling those from BCR::ABL1-positive ALL from which its nomenclature. The presence of kinase-activating genetic drivers has prompted the investigation in preclinical models and clinical settings of the efficacy of tyrosine kinase inhibitor (TKI)-based treatments. This was further supported by an inadequate response to conventional chemotherapy, high rates of induction failure and persistent measurable residual disease (MRD) positivity, which translate in lower survival rates compared to other B-ALL subtypes. Therefore, innovative approaches are underway, including the integration of TKIs with frontline regimens and the early introduction of immunotherapy strategies (monoclonal antibodies, T-cell engagers, drug-conjugates, and CAR-T cells). Allogeneic hematopoietic cell transplantation (HSCT) is currently recommended for adult BCR::ABL1-like ALL patients in first complete remission. However, the incorporation of novel therapies, a more accurate diagnosis and a more sensitive MRD assessment may modify the risk stratification and the indication for transplant in these patients.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia Seragnoli, Bologna, Italy
| |
Collapse
|
8
|
Jia J, Zhou X, Chu Q. Mechanisms and therapeutic prospect of the JAK-STAT signaling pathway in liver cancer. Mol Cell Biochem 2025; 480:1-17. [PMID: 38519710 DOI: 10.1007/s11010-024-04983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Liver cancer (LC) poses a significant global health challenge due to its high incidence and poor prognosis. Current systemic treatment options, such as surgery, chemotherapy, radiofrequency ablation, and immunotherapy, have shown limited effectiveness for advanced LC patients. Moreover, owing to the heterogeneous nature of LC, it is crucial to uncover more in-depth pathogenic mechanisms and develop effective treatments to address the limitations of the existing therapeutic modalities. Increasing evidence has revealed the crucial role of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in the pathogenesis of LC. The specific mechanisms driving the JAK-STAT pathway activation in LC, participate in a variety of malignant biological processes, including cell differentiation, evasion, anti-apoptosis, immune escape, and treatment resistance. Both preclinical and clinical investigations on the JAK-STAT pathway inhibitors have exhibited potential in LC treatment, thereby opening up avenues for the development of more targeted therapeutic strategies for LC. In this study, we provide an overview of the JAK-STAT pathway, delving into the composition, activation, and dynamic interplay within the pathway. Additionally, we focus on the molecular mechanisms driving the aberrant activation of the JAK-STAT pathway in LC. Furthermore, we summarize the latest advancements in targeting the JAK-STAT pathway for LC treatment. The insights presented in this review aim to underscore the necessity of research into the JAK-STAT signaling pathway as a promising avenue for LC therapy.
Collapse
Affiliation(s)
- JunJun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| | - Xuelian Zhou
- Division of Endocrinology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Ramírez Maldonado V, Navas Acosta J, Maldonado Marcos I, Villaverde Ramiro Á, Hernández-Sánchez A, Hernández Rivas JM, Benito Sánchez R. Unraveling the Genetic Heterogeneity of Acute Lymphoblastic Leukemia Based on NGS Applications. Cancers (Basel) 2024; 16:3965. [PMID: 39682152 DOI: 10.3390/cancers16233965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological neoplasm characterized by the clonal expansion of abnormal lymphoid precursors in bone marrow, which leads to alterations in the processes of cell differentiation and maturation as a consequence of genetic alterations. The integration of conventional methods, such as cytogenetics and immunophenotyping, and next-generation sequencing (NGS) has led to significant improvements at diagnosis and patient stratification; this has also allowed the discovery of several novel molecular entities with specific genetic variants that may drive the processes of leukemogenesis. Nevertheless, the understanding of the process of leukemogenesis remains a challenge since this disease persists as the most frequent cancer in children; it accounts for approximately one-quarter of adult acute leukemias, and the patient management may take into consideration the high intra- and inter-tumor heterogeneity and the relapse risk due to the various molecular events that can occur during clonal evolution. Some germline variants have been identified as risk factors or have been found to be related to the response to treatment. Therefore, better knowledge of the genetic alterations in B-ALL will have a prognostic impact from the perspective of personalized medicine. This review aims to compare, synthesize, and highlight recent findings concerning ALL obtained through NGS that have led to a better understanding of new molecular subtypes based on immunophenotypic characteristics, mutational profiles, and expression profiles.
Collapse
Affiliation(s)
- Valentina Ramírez Maldonado
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Josgrey Navas Acosta
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Iván Maldonado Marcos
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ángela Villaverde Ramiro
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Hernández-Sánchez
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Jesús M Hernández Rivas
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Rocío Benito Sánchez
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
10
|
Ziętara KJ, Wróblewska K, Zajączkowska M, Taczała J, Lejman M. The Role of the JAK-STAT Pathway in Childhood B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:6844. [PMID: 38999955 PMCID: PMC11241568 DOI: 10.3390/ijms25136844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
B-cell lymphoblastic leukemia is a hematologic neoplasm that poses a serious health concern in childhood. Genetic aberrations, such as mutations in the genes IL-7, IL7R, JAK1, JAK2, TLSP, CRLF2, and KTM2A or gene fusions involving BCR::ABL1, ETV6::RUNX1, and PAX5::JAK2, often correlate with the onset of this disease. These aberrations can lead to malfunction of the JAK-STAT signaling pathway, which is implicated in various important biological processes, including those related to immunology. Understanding the mechanisms underlying the malfunction of the JAK-STAT pathway holds potential for research on drugs targeting its components. Available drugs that interfere with the JAK-STAT pathway include fludarabine, ruxolitinib, and fedratinib.
Collapse
Affiliation(s)
- Karolina Joanna Ziętara
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (K.J.Z.); (K.W.); (M.Z.)
| | - Kinga Wróblewska
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (K.J.Z.); (K.W.); (M.Z.)
| | - Monika Zajączkowska
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (K.J.Z.); (K.W.); (M.Z.)
| | - Joanna Taczała
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warszawa, Poland;
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
11
|
Podgorica M, Drivet E, Viken JK, Richman A, Vestbøstad J, Szodoray P, Kvam AK, Wik HS, Tjønnfjord GE, Munthe LA, Frietze S, Schjerven H. Transcriptome analysis of primary adult B-cell lineage acute lymphoblastic leukemia identifies pathogenic variants and gene fusions, and predicts subtypes for in depth molecular diagnosis. Eur J Haematol 2024; 112:731-742. [PMID: 38192186 PMCID: PMC10990798 DOI: 10.1111/ejh.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND B-cell acute lymphoblastic leukemia (B-ALL) is classified into subgroups based on known driver oncogenes and molecular lesions, including translocations and recurrent mutations. However, the current diagnostic tests do not identify subtypes or oncogenic lesions for all B-ALL samples, creating a heterogeneous B-ALL group of unknown subtypes. METHODS We sorted primary adult B-ALL cells and performed transcriptome analysis by bulk RNA sequencing (RNA-seq). RESULTS Transcriptomic analysis of an adult B-ALL cohort allowed the classification of four patient samples with subtypes that were not previously revealed by standard gene panels. The leukemia of two patients were of the DUX4 subtype and two were CRLF2+ Ph-like B-ALL. Furthermore, single nucleotide variant analysis detected the oncogenic NRAS-G12D, KRAS-G12D, and KRAS-G13D mutations in three of the patient samples, presenting targetable mutations. Additional oncogenic variants and gene fusions were uncovered, as well as multiple variants in the PDE4DIP gene across five of the patient samples. CONCLUSION We demonstrate that RNA-seq is an effective tool for precision medicine in B-ALL by providing comprehensive molecular profiling of leukemia cells, identifying subtype and oncogenic lesions, and stratifying patients for appropriate therapy.
Collapse
Affiliation(s)
- Mirjam Podgorica
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elsa Drivet
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jonas Krag Viken
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Laboratory Medicine, University of California San Francisco, CA, USA
| | - Alyssa Richman
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Johanne Vestbøstad
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Szodoray
- B Cell Receptor Signaling Group (BCRSG), Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Ann Kristin Kvam
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | | | - Geir E. Tjønnfjord
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Ludvig A. Munthe
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Hilde Schjerven
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Laboratory Medicine, University of California San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Fuloria S, Sekar M, Abida. Non-coding RNAs: Emerging biomarkers and therapeutic targets in ulcerative colitis. Pathol Res Pract 2024; 253:155037. [PMID: 38160482 DOI: 10.1016/j.prp.2023.155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
13
|
Hu M, Liu R, Li J, Zhang L, Cao J, Yue M, Zhong D, Tang R. Clinical features and prognosis of pediatric acute lymphocytic leukemia with JAK-STAT pathway genetic abnormalities: a case series. Ann Hematol 2023; 102:2445-2457. [PMID: 37209119 PMCID: PMC10199427 DOI: 10.1007/s00277-023-05245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/20/2023] [Indexed: 05/22/2023]
Abstract
The objective of this study is to explore the clinical features and outcomes of pediatric patients with acute lymphoblastic leukemia (ALL) harboring JAK-STAT signaling pathway genetic abnormalities. This retrospective case series examined the clinical data of pediatric patients diagnosed with ALL harboring JAK-STAT pathway genetic abnormality at the Children's Hospital of the Capital Institute of Pediatrics between January 2016 and January 2022. Bone marrow next-generation sequencing was used to reveal the JAK pathway abnormalities. Descriptive statistics were used. From 432 children with ALL during the study period, eight had JAK-STAT pathway genetic abnormalities. Regarding immunotyping, there were four patients with common-B cell types and one with pre-B cell type. The three patients with T-ALL had early T-cell precursor(ETP) type, pre-T cell type, and T cell type. Gene mutations were more common than fusion genes. There was no central nervous system involvement in eight patients. All patients were considered at least at intermediate risk before treatments. Four patients underwent hematopoietic stem cell transplantation (HSCT). One child had a comprehensive relapse and died. The child had a severe infection and could not tolerate high-intensity chemotherapy. Another child relapsed 2 years after HSCT and died. Disease-free survival was achieved in six children. JAK-STAT pathway genetic abnormalities in pediatric Ph-like ALL are rare. Special attention should be paid to treatment-related complications, such as infection and combination therapy (chemotherapy, small molecule targeted drugs, immunotherapy, etc.) to reduce treatment-related death and improve long-term quality of life.
Collapse
Affiliation(s)
- Mengze Hu
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Rong Liu
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Juanjuan Li
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lei Zhang
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jing Cao
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Mei Yue
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Dixiao Zhong
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ruihong Tang
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| |
Collapse
|
14
|
Arwood ML, Liu Y, Harkins SK, Weinstock DM, Yang L, Stevenson KE, Plana OD, Dong J, Cirka H, Jones KL, Virtanen AT, Gupta DG, Ceas A, Lawney B, Yoda A, Leahy C, Hao M, He Z, Choi HG, Wang Y, Silvennoinen O, Hubbard SR, Zhang T, Gray NS, Li LS. New scaffolds for type II JAK2 inhibitors overcome the acquired G993A resistance mutation. Cell Chem Biol 2023; 30:618-631.e12. [PMID: 37290440 PMCID: PMC10495080 DOI: 10.1016/j.chembiol.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/07/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Recurrent JAK2 alterations are observed in myeloproliferative neoplasms, B-cell acute lymphoblastic leukemia, and other hematologic malignancies. Currently available type I JAK2 inhibitors have limited activity in these diseases. Preclinical data support the improved efficacy of type II JAK2 inhibitors, which lock the kinase in the inactive conformation. By screening small molecule libraries, we identified a lead compound with JAK2 selectivity. We highlight analogs with on-target biochemical and cellular activity and demonstrate in vivo activity using a mouse model of polycythemia vera. We present a co-crystal structure that confirms the type II binding mode of our compounds with the "DFG-out" conformation of the JAK2 activation loop. Finally, we identify a JAK2 G993A mutation that confers resistance to the type II JAK2 inhibitor CHZ868 but not to our analogs. These data provide a template for identifying novel type II kinase inhibitors and inform further development of agents targeting JAK2 that overcome resistance.
Collapse
Affiliation(s)
- Matthew L Arwood
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shannon K Harkins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Biology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lei Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen E Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Olivia D Plana
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingyun Dong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Haley Cirka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen L Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anniina T Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Dikshat G Gupta
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Amanda Ceas
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Brian Lawney
- Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catharine Leahy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mingfeng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hwan Geun Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yaning Wang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Loretta S Li
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
15
|
Fouad FM, Eid JI. PAX5 fusion genes in acute lymphoblastic leukemia: A literature review. Medicine (Baltimore) 2023; 102:e33836. [PMID: 37335685 PMCID: PMC10194640 DOI: 10.1097/md.0000000000033836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/03/2023] [Indexed: 06/21/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a common cancer affecting children worldwide. The development of ALL is driven by several genes, some of which can be targeted for treatment by inhibiting gene fusions. PAX5 is frequently mutated in ALL and is involved in chromosomal rearrangements and translocations. Mutations in PAX5 interact with other genes, such as ETV6 and FOXP1, which influence B-cell development. PAX5/ETV6 has been observed in both B-ALL patients and a mouse model. The interaction between PAX5 and FOXP1 negatively suppresses the Pax5 gene in B-ALL patients. Additionally, ELN and PML genes have been found to fuse with PAX5, leading to adverse effects on B-cell differentiation. ELN-PAX5 interaction results in the decreased expression of LEF1, MB1, and BLNK, while PML-PAX5 is critical in the early stages of leukemia. PAX5 fusion genes prevent the transcription of the PAX5 gene, making it an essential target gene for the study of leukemia progression and the diagnosis of B-ALL.
Collapse
Affiliation(s)
- Fatma Mohamed Fouad
- Biology Department, College of Science, Sultan Qaboos University, Muscat, Oman
- Chemistry Department, Biotechnology/Bimolecular Chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Jehane I. Eid
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
16
|
Zhang L, Shah B, Zhang Y, Tashkandi H, Xiao W, Fernandez-Pol S, Vergara-Lluri M, Hussaini M, Song J, Lancet J, Moscinski L, Yun S, Lu CM, Medeiros LJ, Tang G. Clinicopathologic characteristics, genetic features, and treatment options for acute lymphoblastic leukemia with JAK2 rearrangement-A 10-case study and literature review. Hum Pathol 2023; 136:1-15. [PMID: 36958463 DOI: 10.1016/j.humpath.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Abstract
JAK2 rearrangement (JAK2-R) in acute lymphoblastic leukemia (ALL) is rare and often categorized as B-ALL with BCR::ABL1-like features based on the World Health Organization classification. We report 10 patients with JAK2-R ALL, 9 males and 1 female, with a median age 40.5 years. Eight patients presented with marked leukocytosis (median WBC, 63 × 10 9/L) and hypercellular (>95%) bone marrow with increased lymphoblasts (72%-95%). There was no evidence of bone marrow fibrosis or hypereosinophilia. Immunophenotypic analysis showed 9 B-cell and 1 T-cell neoplasms. Using fluorescence in situ hybridization (FISH) and RNA sequencing analysis, JAK2 partners were identified for 7 cases and included PCM1 (n=4), ETV6 (n=2) and BCR (n=1). All patients received upfront polychemotherapy. Additionally, 2 patients received ruxolitinib, 2 received allogeneic stem cell transplant, and 1 received CAR-T therapy. The 1- and 3-year overall survival rates were 55.6% and 22.2%, respectively. A literature review identified 24 B-ALL and 4 T-ALL cases with JAK2-R reported, including 16 males, 6 females and 6 gender not stated. Many JAK2 partner-genes were reported with the most common being PAX5 (n=7), ETV6 (n=4), BCR (n=3) and PCM1 (n=2). Survival data or 13 reported cases showed 1- and 3-year overall survival rates of 41.7% and 41.7%, respectively. In summary, JAK2-R ALL occurs more often in adult males, are mostly of B-cell lineage, and associated with an aggressive clinical course. Absence of eosinophilia and bone marrow fibrosis and no evidence of preexisting/concurrent JAK2-R myeloid neoplasms distinguish JAK2-R ALL from other myeloid/lymphoid neoplasms with eosinophilia and JAK2-R.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bijal Shah
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Yumeng Zhang
- Morsani College of Medicine, the University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Hammad Tashkandi
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wenbin Xiao
- Department of Pathology, Memorial Sloane Kettering Cancer Center, New York, New York, USA
| | | | - Maria Vergara-Lluri
- Department of Pathology, Hematopathology Section, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hussaini
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jeffrey Lancet
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Lynn Moscinski
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Seongseok Yun
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Chuanyi M Lu
- Department of Laboratory Medicine, University of California at San Francisco and San Francisco VA Health Care System, San Francisco, CA, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| |
Collapse
|
17
|
Tajiri K, Suehara Y, Suzuki T, Sekine I. Clonal heamatopoiesis and associated cardiovascular diseases. Jpn J Clin Oncol 2023; 53:187-194. [PMID: 36629281 DOI: 10.1093/jjco/hyac210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Cancer and cardiovascular disease share several risk factors. Clonal heamatopoiesis, a novel risk factor associated with both diseases, has received increasing attention in the fields of cardiology, heamatology and oncology. Clonal heamatopoiesis of indeterminate potential refers to the presence of at least one driver mutation in the heamatopoietic cells of peripheral blood without heamatological malignancy. Clonal heamatopoiesis of indeterminate potential is a common age-related condition that affects up to 60% of individuals aged > 80 years. Importantly, clonal heamatopoiesis of indeterminate potential carriers have a 2- to 4-fold higher risk of developing cardiovascular disease than non-carriers. Therefore, we performed an up-to-date review of clonal heamatopoiesis and its association with various forms of cardiovascular disease, including atherosclerotic disease, heart failure, aortic stenosis and pulmonary hypertension. In addition, we reviewed experimental studies that examined the causality and directionality between clonal heamatopoiesis and cardiovascular disease. Lastly, we discussed future research directions that will aid in the design of personalized therapies and preventive strategies for individuals with clonal heamatopoiesis. This review showed that clonal heamatopoiesis of indeterminate potential is a common condition, especially in older patients, and is associated with an increased risk of cardiovascular disease and worse prognosis. However, further research is needed to determine whether anti-inflammatory therapies or therapies that can reduce or eliminate clone size are effective in preventing cardiovascular disease in patients with clonal heamatopoiesis of indeterminate potential.
Collapse
Affiliation(s)
- Kazuko Tajiri
- Department of Cardiology, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuhito Suehara
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Toshio Suzuki
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
18
|
Alkashgari HR, Ruiz-Jimenez C, Stoian C, Coats JS, Baez I, Chirshev E, Martinez SR, Dovat S, Francis-Boyle OL, Casiano CA, Payne KJ. TSLP as a Potential Therapy in the Treatment of CRLF2 B Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 24:474. [PMID: 36613920 PMCID: PMC9820664 DOI: 10.3390/ijms24010474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Cytokine receptor-like factor 2 B-cell acute lymphoblastic leukemia (CRLF2 B-ALL) is a high-risk subtype characterized by CRLF2 overexpression with poor survival rates in children and adults. CRLF2 and interleukin-7 receptor alpha (IL-7Rα) form a receptor for the cytokine thymic stromal lymphopoietin (TSLP), which induces JAK/STAT and PI3K/AKT/mTOR pathway signals. Previous studies from our group showed that low TSLP doses increased STAT5, AKT, and S6 phosphorylation and contributed to CRLF2 B-ALL cell survival. Here we investigated the role of TSLP in the survival and proliferation of CRLF2 B-ALL cells in vitro and in vivo. We hypothesized that high doses of TSLP increase CRLF2 signals and contribute to increased proliferation of CRLF2 B-ALL cells in vitro and in vivo. Interestingly, we observed the opposite effect. Specifically, high doses of TSLP induced apoptosis in human CRLF2 B-ALL cell lines in vitro, prevented engraftment of CRLF2 B-ALL cells, and prolonged the survival of +TSLP patient-derived-xenograft mice. Mechanistically, we showed that high doses of TSLP induced loss of its receptor and loss of CRLF2 signals in vitro. These results suggest that high doses of TSLP could be further investigated as a potential therapy for the treatment of CRLF2 B-ALL.
Collapse
Affiliation(s)
- Hossam R. Alkashgari
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Physiology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Caleb Ruiz-Jimenez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Cornelia Stoian
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jacqueline S. Coats
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Ineavely Baez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Evgeny Chirshev
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Shannalee R. Martinez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Sinisa Dovat
- College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Olivia L. Francis-Boyle
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Rheumatology Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Kimberly J. Payne
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
19
|
Krstic A, Rezayee F, Saft L, Hammarsjö A, Svenberg P, Barbany G. Case Report: Whole genome sequencing identifies CCDC88C as a novel JAK2 fusion partner in pediatric T-cell acute lymphoblastic leukemia. Front Pediatr 2022; 10:1082986. [PMID: 36704135 PMCID: PMC9871838 DOI: 10.3389/fped.2022.1082986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
In the present report, we applied whole genome sequencing (WGS) to genetically characterize a case of pediatric T-cell acute lymphoblastic leukemia (ALL) refractory to standard therapy. WGS identified a novel JAK2 fusion, with CCDC88C as a partner. CCDC88C encodes a protein part of the Wnt signaling pathway and has previously been described in hematological malignancies as fusion partner to FLT3 and PDGFRB. The novel CCDC88C::JAK2 fusion gene results in a fusion transcript, predicted to produce a hybrid protein, which retains the kinase domain of JAK2 and is expected to respond to JAK2 inhibitors. This report illustrates the potential of WGS in the diagnostic setting of ALL.
Collapse
Affiliation(s)
- Aleksandra Krstic
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Fatemah Rezayee
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Leonie Saft
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Pathology and Oncology, Karolinska Institute, Stockholm, Sweden
| | - Anna Hammarsjö
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Petter Svenberg
- Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Gisela Barbany
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|