1
|
Yao J, Yang H, Yuan M, Wang C, Liao H, Song R, Xu Z, Zeng X, Zhang Z. GINS4 silencing mediates hepatocellular cancer cell proliferation, cycle and ferroptosis through POLE2. Cell Signal 2025; 131:111742. [PMID: 40081544 DOI: 10.1016/j.cellsig.2025.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND GINS4 has been identified as a regulator associated with multiple types of cancers. However, the effects of GINS4 on hepatocellular carcinoma (HCC) have not been reported. METHODS GINS4 expression in HCC was evaluated utilizing UALCAN database. The relationship between the expression of GINS4 and the survival probability of HCC patients was analyzed using Kaplan-Meier Plotter. Cell viability was evaluated by CCK8 assay and EDU assay. qRT-PCR and western blot were performed to examine GINS4 expression. The level of cell cycle was measured by flow cytometry and western blot. Fe2+ level and ferroptosis-related proteins were measured by corresponding kits and western blot. Lipid peroxidation was explored by C11 BODIPY 581/591 probe. STRING database and HDOCK database were performed to predict the binding of GINS4 to POLE2. Immunofluorescence and western blotting was adopted for assessing cell autophagy and mTOR signaling pathway. Ki67 and GPX4 levels were measured by immunohistochemistry. The expression levels of POLE2/PI3K/AKT were assessed by western blot. RESULTS The data indicated that GINS4 expression was upregulated in HCC. Knockdown of GINS4 alleviated the proliferation and cycle and promoted ferroptosis of HuH7 cells. GINS4 was proved to bind to POLE2 and the silencing of GINS4 inhibited the expression of POLE2. GINS4 knockdown accelerated ferroptosis in HuH7 cells. POLE2 overexpression reversed the influences of GINS4 silencing on proliferation and cycle, and also ferroptosis. In addition, interference with GINS4 suppressed the activation of PI3K/AKT signaling via POLE2. In vivo experiments illustrated that GINS4 deletion suppressed HCC tumor growth, increased the GPX4 expression and restrained the Ki67 level, as well as reducing POLE2/PI3K/AKT signaling. CONCLUSION GINS4 silencing suppressed proliferation and cycle while promoted ferroptosis in HCC cells by regulating PI3K/AKT signaling via binding to POLE2.
Collapse
Affiliation(s)
- Jinni Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Anhui University of Science and Technology, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| | - Huaicheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; First Clinical College of Anhui University of Science and Technology, Huainan 232007, China.
| | - Meng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Anhui University of Science and Technology, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| | - Congyu Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; First Clinical College of Anhui University of Science and Technology, Huainan 232007, China
| | - Heqiang Liao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; First Clinical College of Anhui University of Science and Technology, Huainan 232007, China
| | - Rui Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Bengbu Medical University, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| | - Zhe Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Bengbu Medical University, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| | - Xiangrui Zeng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Bengbu Medical University, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| | - Zheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China; Graduate School of Bengbu Medical University, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232007, China
| |
Collapse
|
2
|
Goli M, Sandilya V, Ghandour B, Hajj HE, Kobeissy F, Darwiche N, Mechref Y. Exploring the Anti-Leukemic Effect of the Synthetic Retinoid ST1926 on Malignant T Cells: A Comprehensive Proteomics Approach. Int J Mol Sci 2025; 26:4651. [PMID: 40429796 PMCID: PMC12111145 DOI: 10.3390/ijms26104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/01/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
T-cell malignancies represent a group of complex cancers arising from T cells and include aggressive subtypes such as Adult T-cell Leukemia/Lymphoma (ATL) and T-cell Acute Lymphoblastic Leukemia (T-ALL). Patients with these aggressive subtypes still represent an unmet medical condition. The synthetic adamantyl retinoid ST1926, a potent DNA polymerase-α inhibitor, proved a promising potency in preclinical models of ATL and peripheral T-cell lymphoma. Using advanced liquid chromatography-mass spectrometry (LC-MS/MS) techniques, we explored the effects of ST1926 on global protein expression in ATL (HuT-102) and T-ALL (MOLT-4) cells. We demonstrate that ST1926 triggers differentiation and apoptosis in malignant T-cells while halting tumor progression. Evidence at the proteomics level reveals the impact of ST1926 on crucial DNA replication enzymes and cell cycle regulation, highlighting its potential to reduce leukemogenesis and promote apoptosis. Our findings underscore the potential of ST1926 as an innovative therapeutic approach to address these aggressive T-cell malignancies, providing valuable insights into developing new targeted therapies and improving the outcomes and prognosis of patients with these challenging diseases.
Collapse
Affiliation(s)
- Mona Goli
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| | - Vishal Sandilya
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| | - Botheina Ghandour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
| | - Yehia Mechref
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| |
Collapse
|
3
|
da Silva EL, Mesquita FP, Pinto LC, Gomes BPS, de Oliveira EHC, Burbano RMR, Moraes MEAD, de Souza PFN, Montenegro RC. Transcriptome analysis displays new molecular insights into the mechanisms of action of Mebendazole in gastric cancer cells. Comput Biol Med 2025; 184:109415. [PMID: 39566281 DOI: 10.1016/j.compbiomed.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Gastric cancer (GC) is a common cancer worldwide. Therefore, searching for effective treatments is essential, and drug repositioning can be a promising strategy to find new potential drugs for GC therapy. For the first time, we sought to identify molecular alterations and validate new mechanisms related to Mebendazole (MBZ) treatment in GC cells through transcriptome analysis using microarray technology. Data revealed 1066 differentially expressed genes (DEGs), of which 345 (2.41 %) genes were upregulated, 721 (5.04 %) genes were downregulated, and 13,231 (92.54 %) genes remained unaltered after MBZ exposure. The overexpressed genes identified were CCL2, IL1A, and CDKN1A. In contrast, the H3C7, H3C11, and H1-5 were the top 3 underexpressed genes. Gene set enrichment analysis (GSEA) identified 8 pathways significantly overexpressed in the treated group (p < 0.05 and FDR<0.25). The validation of the expression of top desregulated genes by RT-qPCR confirmed the transcriptome results, where MBZ increased the CCL2, IL1A, and CDKN1A and reduced the H3C7, H3C11, and H1-5 transcript levels. Expression analysis in samples from TCGA databases correlated that the lower ILI1A and higher H3C11 and H1-5 gene expression are associated with decreased overall survival rates in patients with GC, indicating that MBZ treatment can improve the prognosis of patients. Thus, the data demonstrated that the drug MBZ alters the transcriptome of the AGP-01 lineage, mainly modulating the expression of histone proteins and inflammatory cytokines, indicating a possible epigenetic and immunological effect on tumor cells, these findings highlight new mechanisms of action related to MBZ treatment. Additional studies are still needed to better clarify the epigenetic and immune mechanism of MBZ in the therapy of GC.
Collapse
Affiliation(s)
- Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Laine Celestino Pinto
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Mundurucus Street, Belém, Brazil
| | - Bruna Puty Silva Gomes
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Rommel Mario Rodríguez Burbano
- Molecular Biology Laboratory, Ophir Loyola Hospital, Av. Governador Magalhães Barata, Belém, Brazil; Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Augusto Correa Avenue, Belém, Brazil
| | - Maria Elisabete Amaral de Moraes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Pedro Filho Noronha de Souza
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil; Visiting Researcher at the Cearense Foundation to Support Scientific and Technological Development, Brazil; National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil.
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil; Red Latinoamericana de Implementación y Validación de guias clinicas Farmacogenomicas (RELIVAF), Brazil.
| |
Collapse
|
4
|
Kamal MM, Mia MS, Faruque MO, Rabby MG, Islam MN, Talukder MEK, Wani TA, Rahman MA, Hasan MM. In silico functional, structural and pathogenicity analysis of missense single nucleotide polymorphisms in human MCM6 gene. Sci Rep 2024; 14:11607. [PMID: 38773180 PMCID: PMC11109216 DOI: 10.1038/s41598-024-62299-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) are one of the most common determinants and potential biomarkers of human disease pathogenesis. SNPs could alter amino acid residues, leading to the loss of structural and functional integrity of the encoded protein. In humans, members of the minichromosome maintenance (MCM) family play a vital role in cell proliferation and have a significant impact on tumorigenesis. Among the MCM members, the molecular mechanism of how missense SNPs of minichromosome maintenance complex component 6 (MCM6) contribute to DNA replication and tumor pathogenesis is underexplored and needs to be elucidated. Hence, a series of sequence and structure-based computational tools were utilized to determine how mutations affect the corresponding MCM6 protein. From the dbSNP database, among 15,009 SNPs in the MCM6 gene, 642 missense SNPs (4.28%), 291 synonymous SNPs (1.94%), and 12,500 intron SNPs (83.28%) were observed. Out of the 642 missense SNPs, 33 were found to be deleterious during the SIFT analysis. Among these, 11 missense SNPs (I123S, R207C, R222C, L449F, V456M, D463G, H556Y, R602H, R633W, R658C, and P815T) were found as deleterious, probably damaging, affective and disease-associated. Then, I123S, R207C, R222C, V456M, D463G, R602H, R633W, and R658C missense SNPs were found to be highly harmful. Six missense SNPs (I123S, R207C, V456M, D463G, R602H, and R633W) had the potential to destabilize the corresponding protein as predicted by DynaMut2. Interestingly, five high-risk mutations (I123S, V456M, D463G, R602H, and R633W) were distributed in two domains (PF00493 and PF14551). During molecular dynamics simulations analysis, consistent fluctuation in RMSD and RMSF values, high Rg and hydrogen bonds in mutant proteins compared to wild-type revealed that these mutations might alter the protein structure and stability of the corresponding protein. Hence, the results from the analyses guide the exploration of the mechanism by which these missense SNPs of the MCM6 gene alter the structural integrity and functional properties of the protein, which could guide the identification of ways to minimize the harmful effects of these mutations in humans.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Sohel Mia
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Omar Faruque
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Numan Islam
- Department of Food Engineering, North Pacific International University of Bangladesh, Dhaka, Bangladesh
| | | | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - M Atikur Rahman
- Department of Biological Sciences, Alabama State University, 915 S Jackson St, Montgomery, AL, 36104, USA.
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
5
|
Wu Z, Xu N, Li G, Yang W, Zhang C, Zhong H, Wu G, Chen F, Li D. Multi-omics analysis of the oncogenic role of optic atrophy 1 in human cancer. Aging (Albany NY) 2023; 15:12982-12997. [PMID: 37980164 PMCID: PMC10713406 DOI: 10.18632/aging.205214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/15/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVE To investigate the prognostic significance of optic atrophy 1 (OPA1) in pan-cancer and analyze the relationship between OPA1 and immune infiltration in cancer. RESULTS OPA1 exhibited high expression levels or mutations in various types of tumor cells, and its expression levels were significantly correlated with the survival rate of tumor patients. In different tumor tissues, there was a notable positive correlation between OPA1 expression levels and the infiltration of cancer-associated fibroblasts in the immune microenvironment. Additionally, OPA1 and its related genes were found to be involved in several crucial biological processes, including protein phosphorylation, protein import into the nucleus, and protein binding. CONCLUSION OPA1 is highly expressed or mutated in numerous tumors and is strongly associated with protein phosphorylation, patient prognosis, and immune cell infiltration. OPA1 holds promise as a novel prognostic marker with potential clinical utility across various tumor types. METHODS We examined OPA1 expression in pan-cancer at both the gene and protein levels using various databases, including Tumor Immune Estimation Resource 2.0 (TIMER 2.0), Gene Expression Profiling Interactive Analysis (GEPIA2), UALCAN, and The Human Protein Atlas (HPA). We utilized the Kaplan-Meier plotter and GEPIA datasets to analyze the relationship between OPA1 expression levels and patient prognosis. Through the cBioPortal database, we detected OPA1 mutations in tumors and examined their relationship with patient prognosis. We employed the TIMER 2.0 database to explore the correlation between OPA1 expression levels in tumor tissue and the infiltration of cancer-associated fibroblasts in the immune microenvironment. Furthermore, we conducted a gene search associated with OPA1 and performed enrichment analysis to identify the main signaling pathways and biological processes linked to them.
Collapse
Affiliation(s)
- Ziyi Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Nuo Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Guoqing Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wen Yang
- The Department of Network Center, Hainan Normal University, Haikou, Hainan 571158, China
| | - Chen Zhang
- Department of Emergency, The Fourth People’s Hospital of Zigong, Zigong, Sichuan 643000, China
| | - Hua Zhong
- Department of Orthopedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Gen Wu
- Department of Orthopedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Fei Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Dianqing Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Longjohn MN, Hudson JABJ, Peña-Castillo L, Cormier RPJ, Hannay B, Chacko S, Lewis SM, Moorehead PC, Christian SL. Extracellular vesicle small RNA cargo discriminates non-cancer donors from pediatric B-lymphoblastic leukemia patients. Front Oncol 2023; 13:1272883. [PMID: 38023151 PMCID: PMC10679349 DOI: 10.3389/fonc.2023.1272883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Pediatric B-acute lymphoblastic leukemia (B-ALL) is a disease of abnormally growing B lymphoblasts. Here we hypothesized that extracellular vesicles (EVs), which are nanosized particles released by all cells (including cancer cells), could be used to monitor B-ALL severity and progression by sampling plasma instead of bone marrow. EVs are especially attractive as they are present throughout the circulation regardless of the location of the originating cell. First, we used nanoparticle tracking analysis to compare EVs between non-cancer donor (NCD) and B-ALL blood plasma; we found that B-ALL plasma contains more EVs than NCD plasma. We then isolated EVs from NCD and pediatric B-ALL peripheral blood plasma using a synthetic peptide-based isolation technique (Vn96), which is clinically amenable and isolates a broad spectrum of EVs. RNA-seq analysis of small RNAs contained within the isolated EVs revealed a signature of differentially packaged and exclusively packaged RNAs that distinguish NCD from B-ALL. The plasma EVs contain a heterogenous mixture of miRNAs and fragments of long non-coding RNA (lncRNA) and messenger RNA (mRNA). Transcripts packaged in B-ALL EVs include those involved in negative cell cycle regulation, potentially suggesting that B-ALL cells may use EVs to discard gene sequences that control growth. In contrast, NCD EVs carry sequences representative of multiple organs, including brain, muscle, and epithelial cells. This signature could potentially be used to monitor B-ALL disease burden in pediatric B-ALL patients via blood draws instead of invasive bone marrow aspirates.
Collapse
Affiliation(s)
- Modeline N. Longjohn
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Jo-Anna B. J. Hudson
- Discipline of Pediatrics, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
- Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | | | - Simi Chacko
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Stephen M. Lewis
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
- Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Paul C. Moorehead
- Discipline of Pediatrics, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Sherri L. Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| |
Collapse
|
7
|
Leng D, Yang Z, Sun H, Song C, Huang C, Ip KU, Chen G, Deng CX, Zhang XD, Zhao Q. Comprehensive Analysis of Tumor Microenvironment Reveals Prognostic ceRNA Network Related to Immune Infiltration in Sarcoma. Clin Cancer Res 2023; 29:3986-4001. [PMID: 37527025 PMCID: PMC10543973 DOI: 10.1158/1078-0432.ccr-22-3396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/23/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Sarcoma is the second most common solid tumor type in children and adolescents. The high level of tumor heterogeneity as well as aggressive behavior of sarcomas brings serious difficulties to developing effective therapeutic strategies for clinical application. Therefore, it is of great importance to identify accurate biomarkers for early detection and prognostic prediction of sarcomas. EXPERIMENTAL DESIGN In this study, we characterized three subtypes of sarcomas based on tumor immune infiltration levels (TIIL), and constructed a prognosis-related competing endogenous RNA (ceRNA) network to investigate molecular regulations in the sarcoma tumor microenvironment (TME). We further built a subnetwork consisting of mRNAs and lncRNAs that are targets of key miRNAs and strongly correlated with each other in the ceRNA network. After validation using public data and experiments in vivo and in vitro, we deeply dug the biological role of the miRNAs and lncRNAs in a subnetwork and their impact on TME. RESULTS Altogether, 5 miRNAs (hsa-mir-125b-2, hsa-mir-135a-1, hsa-mir92a-2, hsa-mir-181a-2, and hsa-mir-214), 3 lncRNAs (LINC00641, LINC01146, and LINC00892), and 10 mRNAs (AGO2, CXCL10, CD86, CASP1, IKZF1, CD27, CD247, CD69, CCR2, and CSF2RB) in the subnetwork were identified as vital regulators to shape the TME. On the basis of the systematic network, we identified that trichostatin A, a pan-HDAC inhibitor, could potentially regulate the TME of sarcoma, thereby inhibiting the tumor growth. CONCLUSIONS Our study identifies a ceRNA network as a promising biomarker for sarcoma. This system provides a more comprehensive understanding and a novel perspective of how ceRNAs are involved in shaping sarcoma TME.
Collapse
Affiliation(s)
- Dongliang Leng
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Ziyi Yang
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Heng Sun
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Chengcheng Song
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, SAR, China
- Stat Key laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Ka U. Ip
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Guokai Chen
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Chu-Xia Deng
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Xiaohua Douglas Zhang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky
| | - Qi Zhao
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| |
Collapse
|