1
|
Xie DH, Li SQ, Sun K, Wang J, Shi ZY, Wang YZ, Chang Y, Yuan XY, Jiang H, Jiang Q, Chang YJ, Huang XJ, Qin YZ. The effect of TIGIT and PD1 expression on T cell function and prognosis in adult patients with acute myeloid leukemia at diagnosis. Cancer Immunol Immunother 2025; 74:170. [PMID: 40214805 PMCID: PMC11992289 DOI: 10.1007/s00262-025-04024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is a recently-identified immune checkpoint molecule, and no study ever explores the prognostic significance of TIGIT on bone marrow T cells of newly-diagnosed acute myeloid leukemia (AML) patients. We collected fresh marrow samples from 71 adult AML patients at diagnosis and 31 healthy donors (HDs) to test for TIGIT and PD1 expression in T cells by flow cytometry. Fifteen newly-diagnosed AML patients and six HDs were performed T cell activation in vitro and tested intracellular TNF-α and INF-γ production. Three bone marrow samples of AML patients were performed single cell RNA-sequencing (scRNA-seq). AML patients had significantly higher frequency of TIGIT + cells in CD4 + T cells but similar frequency in CD8 + T cells compared with HDs (p = 0.0006 and 0.77). High percentage of TIGIT + PD1 + in CD8 + T cells independently predicted poor relapse-free survival (RFS) (p = 0.029). Differing from HDs, AML patients had lower level of intracellular TNF-α and INF-γ in TIGIT + cells compared with their TIGIT- counterparts in both CD4 + T and CD8 + T cells. TIGIT + PD1 + CD8 + T cells of patients exhibited significantly lower level of intracellular TNF-α compared with those of HDs (p = 0.024). scRNA-seq data showed that TIGIT + PDCD1 + CD8 + T cells had significantly higher exhaustion score than TIGIT + and PD1 + CD8 + T cells and lower cytotoxic score than TIGIT + CD8 + T cells (p = 0.0016, 0.012 and 0.0014). Therefore, CD8 + T cells with TIGIT and PD1 co-expression exhibited high degree of exhaustion and dysfunctional cytotoxicity, and high percentage of bone marrow TIGIT + PD1 + in CD8 + T cells at diagnosis predicted poor outcome in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Female
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Male
- Adult
- Middle Aged
- Prognosis
- Aged
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Young Adult
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Dai-Hong Xie
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Si-Qi Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Jun Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Yan Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Xiao-Ying Yuan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Sun Z, He B, Yang Z, Huang Y, Duan Z, Yu C, Dan Z, Paek C, Chen P, Zhou J, Lei J, Wang F, Liu B, Yin L. Cost-Effective Whole Transcriptome Sequencing Landscape and Diagnostic Potential Biomarkers in Active Tuberculosis. ACS Infect Dis 2024; 10:2318-2332. [PMID: 38832694 DOI: 10.1021/acsinfecdis.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Tuberculosis (TB) is a prevalent and severe infectious disease that poses a significant threat to human health. However, it is frequently disregarded as there are not enough quick and accurate ways to diagnose tuberculosis. Here, we develop a strategy for tuberculosis detection to address the challenges, including an experimental strategy, namely, Double Adapter Directional Capture sequencing (DADCSeq), an easily operated and low-cost whole transcriptome sequencing method, and a computational method to identify hub differentially expressed genes as well as the diagnosis of TB based on whole transcriptome data using DADCSeq on peripheral blood mononuclear cells (PBMCs) from active TB and latent TB or healthy control. Applying our approach to create a robust and stable TB multi-mRNA risk probability model (TBMMRP) that can accurately distinguish active and latent TB patients, including active TB and healthy controls in clinical cohorts, this diagnostic biomarker was successfully validated by several independent cross-platform cohorts with favorable performance in differentiating active TB from latent TB or active TB from healthy controls and further demonstrated superior or similar diagnostic accuracy compared to previous diagnostic markers. Overall, we develop a low-cost and effective strategy for tuberculosis diagnosis; as the clinical cohort increases, we can expand to different disease kinds and learn new features through our disease diagnosis strategy.
Collapse
Affiliation(s)
- Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Boxiao He
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Zhifeng Yang
- Department of Chest Surgery, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430040, China
| | - Yi Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Zhaoyu Duan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Chengyi Yu
- Department of Active and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Zhaokui Dan
- Clinical Medicine School of Hubei University of Science and Technology, Xianning, Hubei Province 437100, China
| | - Chonil Paek
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Peng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Jin Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Bing Liu
- Department of Active and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei Province 100730, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| |
Collapse
|
3
|
Ri K, Weng TH, Claveras Cabezudo A, Jösting W, Zhang Y, Bazzone A, Leong NCP, Welsch S, Doty RT, Gursu G, Lim TJY, Schmidt SL, Abkowitz JL, Hummer G, Wu D, Nguyen LN, Safarian S. Molecular mechanism of choline and ethanolamine transport in humans. Nature 2024; 630:501-508. [PMID: 38778100 PMCID: PMC11168923 DOI: 10.1038/s41586-024-07444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome2-7. Earlier studies concluded that FLVCR1 may function as a haem exporter8-12, whereas FLVCR2 was suggested to act as a haem importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14-16. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation-π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.
Collapse
Affiliation(s)
- Keiken Ri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tsai-Hsuan Weng
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Ainara Claveras Cabezudo
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Wiebke Jösting
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Yu Zhang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Nancy C P Leong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Raymond T Doty
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gonca Gursu
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Tiffany Jia Ying Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sarah Luise Schmidt
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Janis L Abkowitz
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany.
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany.
| | - Di Wu
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Schara Safarian
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany.
| |
Collapse
|
4
|
Zhou Q, Shi R. Shared Genetic Features of Psoriasis and Myocardial Infarction: Insights From a Weighted Gene Coexpression Network Analysis. J Am Heart Assoc 2024; 13:e033893. [PMID: 38533976 PMCID: PMC11179746 DOI: 10.1161/jaha.123.033893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Increasing evidence suggests a higher propensity for acute myocardial infarction (MI) in patients with psoriasis. However, the shared mechanisms underlying this comorbidity in these patients remain unclear. This study aimed to explore the shared genetic features of psoriasis and MI and to identify potential biomarkers indicating their coexistence. METHODS AND RESULTS Data sets obtained from the gene expression omnibus were examined using a weighted gene coexpression network analysis approach. Hub genes were identified using coexpression modules and validated in other data sets and through in vitro cellular experiments. Bioinformatics tools, including the Human microRNA Disease Database, StarBase, and miRNet databases, were used to construct a ceRNA network and predict potential regulatory mechanisms. By applying weighted gene coexpression network analysis, we identified 2 distinct modules that were significant for both MI and psoriasis. Inflammatory and immune pathways were highlighted by gene ontology enrichment analysis of the overlapping genes. Three pivotal genes-Src homology and collagen 1, disruptor of telomeric silencing 1-like, and feline leukemia virus subgroup C cellular receptor family member 2-were identified as potential biomarkers. We constructed a ceRNA network that suggested the upstream regulatory roles of these genes in the coexistence of psoriasis and MI. CONCLUSIONS As potential therapeutic targets, Src homology and collagen 1, feline leukemia virus subgroup C cellular receptor family member 2, and disruptor of telomeric silencing 1-like provide novel insights into the shared genetic features between psoriasis and MI. This study paves the way for future studies focusing on the prevention of MI in patients with psoriasis.
Collapse
Affiliation(s)
- Qiaoyu Zhou
- Department of Cardiovascular MedicineThird Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Ruizheng Shi
- Department of Cardiovascular MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Dunaway LS, Loeb SA, Petrillo S, Tolosano E, Isakson BE. Heme metabolism in nonerythroid cells. J Biol Chem 2024; 300:107132. [PMID: 38432636 PMCID: PMC10988061 DOI: 10.1016/j.jbc.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.
Collapse
Affiliation(s)
- Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sara Petrillo
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|