1
|
Radu KR, Baek KH. Insights on the Role of Sialic Acids in Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2025; 26:2233. [PMID: 40076855 PMCID: PMC11900591 DOI: 10.3390/ijms26052233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Sialic acids serve as crucial terminal sugars on glycoproteins or glycolipids present on cell surfaces. These sugars are involved in diverse physiological and pathological processes through their interactions with carbohydrate-binding proteins, facilitating cell-cell communication and influencing the outcomes of bacterial and viral infections. The role of hypersialylation in tumor growth and metastasis has been widely studied. Recent research has highlighted the significance of aberrant sialylation in enabling tumor cells to escape immune surveillance and sustain their malignant behavior. Acute lymphoblastic leukemia (ALL) is a heterogenous hematological malignancy that primarily affects children and is the second leading cause of mortality among individuals aged 1 to 14. ALL is characterized by the uncontrolled proliferation of immature lymphoid cells in the bone marrow, peripheral blood, and various organs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are cell surface proteins that can bind to sialic acids. Activation of Siglecs triggers downstream reactions, including induction of cell apoptosis. Siglec-7 and Siglec-9 have been reported to promote cancer progression by driving macrophage polarization, and their expressions on natural killer cells can inhibit tumor cell death. This comprehensive review aims to explore the sialylation mechanisms and their effects on ALL in children. Understanding the complex interplay between sialylation and ALL holds great potential for developing novel diagnostic tools and therapeutic interventions in managing this pediatric malignancy.
Collapse
Affiliation(s)
- Kimberley Rinai Radu
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Kwang-Hyun Baek
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
- Department of Bioconvergence, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Dohadwala S, Shah P, Farrell M, Politch J, Marathe J, Costello CE, Anderson DJ. Sialidases derived from Gardnerella vaginalis remodel the sperm glycocalyx and impair sperm function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636076. [PMID: 39975358 PMCID: PMC11838519 DOI: 10.1101/2025.02.01.636076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bacterial vaginosis (BV), a dysbiosis of the vaginal microbiome, affects approximately 29 percent of women worldwide (up to 50% in some regions) and is associated with several adverse health outcomes including preterm birth and increased incidence of sexually transmitted infection (STI). BV-associated bacteria, such as Gardnerella vaginalis and Prevotella timonensis, damage the vaginal mucosa through the activity of sialidase enzymes that remodel the epithelial glycocalyx and degrade mucin glycoproteins. This damage creates an inflammatory environment which likely contributes to adverse health outcomes. However, whether BV-associated glycolytic enzymes also damage sperm during their transit through the reproductive tract has not yet been determined. Here, we show that sialidase-mediated glycocalyx remodeling of human sperm increases sperm susceptibility to damage within the female reproductive tract. In particular, we report that desialylated human sperm demonstrate increased susceptibility to complement lysis and agglutination, as well as decreased sperm transit through cervical mucus. Our results demonstrate a mechanism by which BV-associated sialidases may affect sperm survival and function and potentially contribute to adverse reproductive outcomes such as preterm birth and infertility.
Collapse
Affiliation(s)
- Sarah Dohadwala
- Boston University Chobanian and Avedisian School of Medicine, Boston MA
| | | | | | - Joseph Politch
- Boston University Chobanian and Avedisian School of Medicine, Boston MA
| | - Jai Marathe
- Boston University Chobanian and Avedisian School of Medicine, Boston MA
| | - Catherine E Costello
- Boston University Chobanian and Avedisian School of Medicine, Boston MA
- Boston University, Boston MA
| | | |
Collapse
|
3
|
Li Y, Zhai Y, Fu B, He Y, Feng Y, Ma F, Lu H. A comprehensive N-glycome map of porcine sperm membrane before and after capacitation. Carbohydr Polym 2024; 335:122084. [PMID: 38616102 DOI: 10.1016/j.carbpol.2024.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
Mapping the N-glycome of porcine sperm before and after sperm capacitation is important for understanding the rearrangement of glycoconjugates during capacitation. In this work, we characterized the N-glycome on the membranes of 18 pairs of fresh porcine sperm before capacitation and porcine sperm after capacitation by MALDI-MS (Matrix-assisted laser desorption/ionization-mass spectrometry). A total of 377 N-glycans were detected and a comprehensive N-glycome map of porcine sperm membranes before and after capacitation was generated, which presents the largest N-glycome dataset of porcine sperm cell membranes. Statistical analysis revealed a significantly higher level of high mannose glycosylation and a significantly lower level of fucosylation, galactosylation, and α-2,6-NeuAc after capacitation, which is further verified by flow cytometry and lectin blotting. This research reveals new insights into the relationship between N-glycosylation variations and sperm capacitation, including the underlying mechanisms of the capacitation process.
Collapse
Affiliation(s)
- Yueyue Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yujia Zhai
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Bing Fu
- Department of Chemistry, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Yuanlin He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Haojie Lu
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Sečová P, Hackerová L, Horovská Ľ, Michalková K, Jankovičová J, Postlerová P, Antalíková J. Complexity and modification of the bull sperm glycocalyx during epididymal maturation. FASEB J 2024; 38:e23687. [PMID: 38785390 DOI: 10.1096/fj.202400551rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Mammalian spermatozoa have a surface covered with glycocalyx, consisting of heterogeneous glycoproteins and glycolipids. This complexity arises from diverse monosaccharides, distinct linkages, various isomeric glycans, branching levels, and saccharide sequences. The glycocalyx is synthesized by spermatozoa developing in the testis, and its subsequent alterations during their transit through the epididymis are a critical process for the sperm acquisition of fertilizing ability. In this study, we performed detailed analysis of the glycocalyx on the sperm surface of bull spermatozoa in relation to individual parts of the epididymis using a wide range (24) of lectins with specific carbohydrate binding preferences. Fluorescence analysis of intact sperm isolated from the bull epididymides was complemented by Western blot detection of protein extracts from the sperm plasma membrane fractions. Our experimental results revealed predominant sequential modification of bull sperm glycans with N-acetyllactosamine (LacNAc), followed by subsequent sialylation and fucosylation in a highly specific manner. Additionally, variations in the lectin detection on the sperm surface may indicate the acquisition or release of glycans or glycoproteins. Our study is the first to provide a complex analysis of the bull sperm glycocalyx modification during epididymal maturation.
Collapse
Affiliation(s)
- Petra Sečová
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Lenka Hackerová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ľubica Horovská
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarína Michalková
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jana Jankovičová
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Pavla Postlerová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Antalíková
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
5
|
Palenikova V, Pavlova H, Kraus D, Kratka Z, Komrskova K, Postlerova P. The correlation between human seminal plasma sialoproteins and ejaculate parameters. Int J Biol Macromol 2024; 266:131341. [PMID: 38574922 DOI: 10.1016/j.ijbiomac.2024.131341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Sialic acids are negatively charged carbohydrates that are components of saccharide chains covalently linked to macromolecules. Sialylated glycoproteins are important for most biological processes, including reproduction, where they are associated with spermatogenesis, sperm motility, immune responses, and fertilization. Changes in the glycoprotein profile or sialylation in glycoproteins are likely to affect the quality of ejaculate. The aim of this study was to determine differences in the degree of sialylation between normozoospermic ejaculates and ejaculates with a pathological spermiogram using two lectins, Sambucus nigra (SNA) and Maackia amurensis (MAL II/MAA) recognizing α-2,6 or α-2,3 linkage of Sia to galactosyl residues. Our results show a close relationship between seminal plasma (SP) sialoproteins and the presence of anti-sperm antibodies in the ejaculate, apoptotic spermatozoa, and ejaculate quality. Using mass spectrometry, we identified SP sialoproteins such as, semenogelins, glycodelin, prolactin-inducible protein, lactotransferrin, and clusterin that are associated with spermatozoa and contribute to the modulation of the immune response and sperm apoptosis. Our findings suggest a correlation between the degree of SP glycoprotein sialylation and the existence of possible pathological states of spermatozoa and reproductive organs. Glycoproteins sialylation represents a potential parameter reflecting the overall quality of ejaculate and could potentially be utilised in diagnostics.
Collapse
Affiliation(s)
- Veronika Palenikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Hana Pavlova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Daniel Kraus
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | | | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - Pavla Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 165 00 Prague 6, Czech Republic.
| |
Collapse
|
6
|
Almhanna H, Kumar AHS, Kilroy D, Duggan G, Irwin JA, Hogg B, Reid C. Comparison of Siglec-1 protein networks and expression patterns in sperm and male reproductive tracts of mice, rats, and humans. Vet World 2024; 17:645-657. [PMID: 38680147 PMCID: PMC11045525 DOI: 10.14202/vetworld.2024.645-657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 05/01/2024] Open
Abstract
Background Sialic acid-binding immunoglobulin-like lectin 1 (Siglec-1) is a transmembrane glycoprotein involved in the sialic acid (Sia)-dependent regulation of the immune system. Siglec-1 expression has recently been identified in the male reproductive tract (MRT) of several species, including humans, cattle, horses, and sheep, and may play a role in modulating fertility in a Sia-dependent manner. Materials and Methods In this study, protein-protein interaction (PPI) analysis of Siglec-1 was conducted to identify associated network protein conservation, and the expression of Siglec-1 in the MRT of mice and rats, including their accessory sex glands and spermatozoa was determined by immunostaining. Results Network analysis of proteins with Siglec-1 in mice and rats demonstrated significant similarity to human Siglec-1 networks, suggesting a similar conservation of network proteins between these species and, hence, a potential conservation role in immune modulation and function. Specific immunostaining patterns of mouse and rat testes, epididymis, ductus deferens, accessory sex gland tissues, and sperm were detected using human Siglec-1. These results confirmed that the human Siglec-1 antibody could cross-react with mouse and rat Siglec-1, suggesting that the specific expression patterns of Siglec-1 in the MRT and sperm of both mice and rats are similar to those observed in other species. Conclusions The conservation of Siglec-1 expression patterns in sperm and within the MRT and the similarity of protein networks for Siglec-1 across species suggest that Siglec-1 may function in a similar manner across species. These results also suggest that rodents may serve as a valuable model system for exploring the function of Siglecs in the reproductive system across species and their potential role in modulating fertility in a Sia-dependent manner.
Collapse
Affiliation(s)
- Hazem Almhanna
- Department of Anatomy and Histology, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - Arun HS Kumar
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - David Kilroy
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - Gina Duggan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - Jane A. Irwin
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - Bridget Hogg
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - Colm Reid
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| |
Collapse
|
7
|
Manetti M, Marini M, Perna A, Tani A, Sgambati E. Sialylation status and its relationship with morphofunctional changes in human adult testis during sexually mature life and aging: A narrative review. Acta Histochem 2024; 126:152143. [PMID: 38382219 DOI: 10.1016/j.acthis.2024.152143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Sialic acids (Sias) are a family of electronegatively charged nine-carbon monosaccharides containing a carboxylic acid, mostly found as terminal residues in glycans of glycoproteins and glycolipids. They are bound to galactose or N-acetylgalactosamine via α2,3 or α2,6 linkage, or to other Sias especially via α2,8 linkage, which results in monomeric, oligomeric, and polymeric forms. Sias play determinant roles in a multitude of biological processes in human tissues from development to adult life until aging. In this review, we summarized the current knowledge on the sialylation status in the human testis with a main focus on sexually mature life and aging, when this organ shows significant morphofunctional changes resulting into variations of hormonal levels, as well as changes in molecules involved in mitochondrial function, receptors, and signaling proteins. Evidence suggests that Sias may have crucial morphofunctional roles in the different testicular components during the sexually mature age. With advancing age, significant loss of Sias and/or changes in sialylation status occur in all the testicular components, which seems to contribute to morphofunctional changes characteristic of the aging testis. Based on the current knowledge, further in-depth investigations will be necessary to better understand the mechanistic role of Sias in the biological processes of human testicular tissue and the significance of their changes during the aging process. Future investigations might also contribute to the development of novel prophylactic and/or therapeutic approaches that, by maintaining/restoring the correct sialylation status, could help in slowing down the testis aging process, thus preserving the testicular structure and functionality and preventing age-related pathologies.
Collapse
Affiliation(s)
- Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Mirca Marini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia 86090, Italy.
| |
Collapse
|
8
|
Jastrząb P, Narejko K, Car H, Wielgat P. Cell Membrane Sialome: Sialic Acids as Therapeutic Targets and Regulators of Drug Resistance in Human Cancer Management. Cancers (Basel) 2023; 15:5103. [PMID: 37894470 PMCID: PMC10604966 DOI: 10.3390/cancers15205103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
A cellular sialome is a physiologically active and dynamically changing component of the cell membrane. Sialylation plays a crucial role in tumor progression, and alterations in cellular sialylation patterns have been described as modulators of chemotherapy effectiveness. However, the precise mechanisms through which altered sialylation contributes to drug resistance in cancer are not yet fully understood. This review focuses on the intricate interplay between sialylation and cancer treatment. It presents the role of sialic acids in modulating cell-cell interactions, the extracellular matrix (ECM), and the immunosuppressive processes within the context of cancer. The issue of drug resistance is also discussed, and the mechanisms that involve transporters, the tumor microenvironment, and metabolism are analyzed. The review explores drugs and therapeutic approaches that may induce modifications in sialylation processes with a primary focus on their impact on sialyltransferases or sialidases. Despite advancements in cellular glycobiology and glycoengineering, an interdisciplinary effort is required to decipher and comprehend the biological characteristics and consequences of altered sialylation. Additionally, understanding the modulatory role of sialoglycans in drug sensitivity is crucial to applying this knowledge in clinical practice for the benefit of cancer patients.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Karolina Narejko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| |
Collapse
|
9
|
Decloquement M, Venuto MT, Cogez V, Steinmetz A, Schulz C, Lion C, Noel M, Rigolot V, Teppa RE, Biot C, Rebl A, Galuska SP, Harduin-Lepers A. Salmonid polysialyltransferases to generate a variety of sialic acid polymers. Sci Rep 2023; 13:15610. [PMID: 37730806 PMCID: PMC10511417 DOI: 10.1038/s41598-023-42095-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
The human polysialyltransferases ST8Sia II and ST8Sia IV catalyze the transfer of several Neu5Ac residues onto glycoproteins forming homopolymers with essential roles during different physiological processes. In salmonids, heterogeneous set of sialic acids polymers have been described in ovary and on eggs cell surface and three genes st8sia4, st8sia2-r1 and st8sia2-r2 were identified that could be implicated in these heteropolymers. The three polysialyltransferases from the salmonid Coregonus maraena were cloned, recombinantly expressed in HEK293 cells and the ST8Sia IV was biochemically characterized. The MicroPlate Sialyltransferase Assay and the non-natural donor substrate CMP-SiaNAl were used to demonstrate enzyme activity and optimize polysialylation reactions. Polysialylation was also carried out with natural donor substrates CMP-Neu5Ac, CMP-Neu5Gc and CMP-Kdn in cell-free and cell-based assays and structural analyses of polysialylated products using the anti-polySia monoclonal antibody 735 and endoneuraminidase N and HPLC approaches. Our data highlighted distinct specificities of human and salmonid polysialyltransferases with notable differences in donor substrates use and the capacity of fish enzymes to generate heteropolymers. This study further suggested an evolution of the biological functions of polySia. C. maraena ST8Sia IV of particular interest to modify glycoproteins with a variety of polySia chains.
Collapse
Affiliation(s)
- Mathieu Decloquement
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Marzia Tindara Venuto
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Virginie Cogez
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Anna Steinmetz
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Cédric Lion
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Maxence Noel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Vincent Rigolot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Roxana Elin Teppa
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Christophe Biot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology FBN, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Sebastian Peter Galuska
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Faculté des sciences et Technologies, Univ. Lille, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
10
|
Harduin-Lepers A. The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases. Glycoconj J 2023; 40:473-492. [PMID: 37247156 PMCID: PMC10225777 DOI: 10.1007/s10719-023-10123-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Every eukaryotic cell is covered with a thick layer of complex carbohydrates with essential roles in their social life. In Deuterostoma, sialic acids present at the outermost positions of glycans of glycoconjugates are known to be key players in cellular interactions including host-pathogen interactions. Their negative charge and hydrophilic properties enable their roles in various normal and pathological states and their expression is altered in many diseases including cancers. Sialylation of glycoproteins and glycolipids is orchestrated by the regulated expression of twenty sialyltransferases in human tissues with distinct enzymatic characteristics and preferences for substrates and linkages formed. However, still very little is known on the functional organization of sialyltransferases in the Golgi apparatus and how the sialylation machinery is finely regulated to provide the ad hoc sialome to the cell. This review summarizes current knowledge on sialyltransferases, their structure-function relationships, molecular evolution, and their implications in human biology.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|