1
|
da Silva FPG, Matte R, Wiedmer DB, da Silva APG, Menin RM, Barbosa FB, Meneguzzi TAM, Pereira SB, Fausto AT, Klug L, Melim BP, Beltrão CJ. HIF-1α Pathway in COVID-19: A Scoping Review of Its Modulation and Related Treatments. Int J Mol Sci 2025; 26:4202. [PMID: 40362439 PMCID: PMC12071378 DOI: 10.3390/ijms26094202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The COVID-19 pandemic, driven by SARS-CoV-2, has led to a global health crisis, highlighting the virus's unique molecular mechanisms that distinguish it from other respiratory pathogens. It is known that the Hypoxia-Inducible Factor 1α (HIF-1α) activates a complex network of intracellular signaling pathways regulating cellular energy metabolism, angiogenesis, and cell survival, contributing to the wide range of clinical manifestations of COVID-19, including Post-Acute COVID-19 Syndrome (PACS). Emerging evidence suggests that dysregulation of HIF-1α is a key driver of systemic inflammation, silent hypoxia, and pathological tissue remodeling in both the acute and post-acute phases of the disease. This scoping review was conducted following PRISMA-ScR guidelines and registered in INPLASY. It involved a literature search in Scopus and PubMed, supplemented by manual reference screening, with study selection facilitated by Rayyan software. Our analysis clarifies the dual role of HIF-1α, which may either worsen inflammatory responses and viral persistence or support adaptive mechanisms that reduce cellular damage. The potential for targeting HIF-1α therapeutically in COVID-19 is complex, requiring further investigation to clarify its precise role and translational applications. This review deepens the molecular understanding of SARS-CoV-2-induced cellular and tissue dysfunction in hypoxia, offering insights for improving clinical management strategies and addressing long-term sequelae.
Collapse
Affiliation(s)
- Felipe Paes Gomes da Silva
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná—PUCPR, R. Imaculada Conceição, 1155—Prado Velho, Curitiba 80215-901, PR, Brazil; (F.P.G.d.S.); (R.M.); (D.B.W.); (A.P.G.d.S.); (R.M.M.)
| | - Rafael Matte
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná—PUCPR, R. Imaculada Conceição, 1155—Prado Velho, Curitiba 80215-901, PR, Brazil; (F.P.G.d.S.); (R.M.); (D.B.W.); (A.P.G.d.S.); (R.M.M.)
| | - David Batista Wiedmer
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná—PUCPR, R. Imaculada Conceição, 1155—Prado Velho, Curitiba 80215-901, PR, Brazil; (F.P.G.d.S.); (R.M.); (D.B.W.); (A.P.G.d.S.); (R.M.M.)
| | - Arthur Paes Gomes da Silva
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná—PUCPR, R. Imaculada Conceição, 1155—Prado Velho, Curitiba 80215-901, PR, Brazil; (F.P.G.d.S.); (R.M.); (D.B.W.); (A.P.G.d.S.); (R.M.M.)
| | - Rafaela Makiak Menin
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná—PUCPR, R. Imaculada Conceição, 1155—Prado Velho, Curitiba 80215-901, PR, Brazil; (F.P.G.d.S.); (R.M.); (D.B.W.); (A.P.G.d.S.); (R.M.M.)
| | - Fernanda Bressianini Barbosa
- School of Medicine, Faculdade Evangélica Mackenzie do Paraná, R. Padre Anchieta, no. 2770—Bigorrilho, Curitiba 80730-000, PR, Brazil;
| | - Thainá Aymê Mocelin Meneguzzi
- School of Medicine, Universidade Nove de Julho—UNINOVE, Rua Vergueiro, 249—Liberdade, São Paulo 01504-001, SP, Brazil; (T.A.M.M.); (B.P.M.)
| | - Sabrina Barancelli Pereira
- School of Medicine, Universidade Positivo—UP, R. Professor Pedro Viriato Parigot de Souza, 5300, Curitiba 81280-330, PR, Brazil; (S.B.P.); (A.T.F.); (L.K.)
| | - Amanda Terres Fausto
- School of Medicine, Universidade Positivo—UP, R. Professor Pedro Viriato Parigot de Souza, 5300, Curitiba 81280-330, PR, Brazil; (S.B.P.); (A.T.F.); (L.K.)
| | - Larissa Klug
- School of Medicine, Universidade Positivo—UP, R. Professor Pedro Viriato Parigot de Souza, 5300, Curitiba 81280-330, PR, Brazil; (S.B.P.); (A.T.F.); (L.K.)
| | - Bruna Pinheiro Melim
- School of Medicine, Universidade Nove de Julho—UNINOVE, Rua Vergueiro, 249—Liberdade, São Paulo 01504-001, SP, Brazil; (T.A.M.M.); (B.P.M.)
| | - Claudio Jose Beltrão
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná—PUCPR, R. Imaculada Conceição, 1155—Prado Velho, Curitiba 80215-901, PR, Brazil; (F.P.G.d.S.); (R.M.); (D.B.W.); (A.P.G.d.S.); (R.M.M.)
| |
Collapse
|
2
|
Janevska M, Naessens E, Verhasselt B. Impact of SARS-CoV-2 Wuhan and Omicron Variant Proteins on Type I Interferon Response. Viruses 2025; 17:569. [PMID: 40285011 PMCID: PMC12031613 DOI: 10.3390/v17040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
SARS-CoV-2 has demonstrated a remarkable capacity for immune evasion. While initial studies focused on the Wuhan variant and adaptive immunity, later emerging strains such as Omicron exhibit mutations that may alter their immune-modulatory properties. We performed a comprehensive review of immune evasion mechanisms associated with SARS-CoV-2 viral proteins to focus on the evolutionary dynamics of immune modulation. We systematically analyzed and compared the impact of all currently known Wuhan and Omicron SARS-CoV-2 proteins on type I interferon (IFN) responses using a dual-luciferase reporter assay carrying an interferon-inducible promoter. Results revealed that Nsp1, Nsp5, Nsp14, and ORF6 are potent type I IFN inhibitors conserved across Wuhan and Omicron strains. Notably, we identified strain-specific differences, with Nsp6 and Spike proteins exhibiting enhanced IFN suppression in Omicron, whereas the Envelope protein largely retained this function. To extend these findings, we investigated selected proteins in primary human endothelial cells and also observed strain-specific differences in immune response with higher type I IFN response in cells expressing the Wuhan strain variant, suggesting that Omicron's adaptational mutations may contribute to a damped type I IFN response in the course of the pandemic's trajectory.
Collapse
Affiliation(s)
- Marija Janevska
- Department of Diagnostic Sciences, Ghent University, B9000 Ghent, Belgium;
| | - Evelien Naessens
- Department of Laboratory Medicine, Ghent University Hospital, B9000 Ghent, Belgium;
| | - Bruno Verhasselt
- Department of Diagnostic Sciences, Ghent University, B9000 Ghent, Belgium;
- Department of Laboratory Medicine, Ghent University Hospital, B9000 Ghent, Belgium;
| |
Collapse
|
3
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
4
|
Chen S, Fu Z, Chen K, Zheng X, Fu Z. Decoding HiPSC-CM's Response to SARS-CoV-2: mapping the molecular landscape of cardiac injury. BMC Genomics 2024; 25:271. [PMID: 38475718 DOI: 10.1186/s12864-024-10194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Acute cardiac injury caused by coronavirus disease 2019 (COVID-19) increases mortality. Acute cardiac injury caused by COVID-19 requires understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly infects cardiomyocytes. This study provides a solid foundation for related studies by using a model of SARS-CoV-2 infection in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) at the transcriptome level, highlighting the relevance of this study to related studies. SARS-CoV-2 infection in hiPSC-CMs has previously been studied by bioinformatics without presenting the full molecular biological process. We present a unique bioinformatics view of the complete molecular biological process of SARS-CoV-2 infection in hiPSC-CMs. METHODS To validate the RNA-seq datasets, we used GSE184715 and GSE150392 for the analytical studies, GSE193722 for validation at the cellular level, and GSE169241 for validation in heart tissue samples. GeneCards and MsigDB databases were used to find genes associated with the phenotype. In addition to differential expression analysis and principal component analysis (PCA), we also performed protein-protein interaction (PPI) analysis, functional enrichment analysis, hub gene analysis, upstream transcription factor prediction, and drug prediction. RESULTS Differentially expressed genes (DEGs) were classified into four categories: cardiomyocyte cytoskeletal protein inhibition, proto-oncogene activation and inflammation, mitochondrial dysfunction, and intracellular cytoplasmic physiological function. Each of the hub genes showed good diagnostic prediction, which was well validated in other datasets. Inhibited biological functions included cardiomyocyte cytoskeletal proteins, adenosine triphosphate (ATP) synthesis and electron transport chain (ETC), glucose metabolism, amino acid metabolism, fatty acid metabolism, pyruvate metabolism, citric acid cycle, nucleic acid metabolism, replication, transcription, translation, ubiquitination, autophagy, and cellular transport. Proto-oncogenes, inflammation, nuclear factor-kappaB (NF-κB) pathways, and interferon signaling were activated, as well as inflammatory factors. Viral infection activates multiple pathways, including the interferon pathway, proto-oncogenes and mitochondrial oxidative stress, while inhibiting cardiomyocyte backbone proteins and energy metabolism. Infection limits intracellular synthesis and metabolism, as well as the raw materials for mitochondrial energy synthesis. Mitochondrial dysfunction and energy abnormalities are ultimately caused by proto-oncogene activation and SARS-CoV-2 infection. Activation of the interferon pathway, proto-oncogene up-regulation, and mitochondrial oxidative stress cause the inflammatory response and lead to diminished cardiomyocyte contraction. Replication, transcription, translation, ubiquitination, autophagy, and cellular transport are among the functions that decline physiologically. CONCLUSION SARS-CoV-2 infection in hiPSC-CMs is fundamentally mediated via mitochondrial dysfunction. Therapeutic interventions targeting mitochondrial dysfunction may alleviate the cardiovascular complications associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sicheng Chen
- Department of Cardiology, Shantou Central Hospital, Shantou, 515031, China
| | - Zhenquan Fu
- School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kaitong Chen
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Xinyao Zheng
- Shantou University Medical College, Shantou, 515041, China
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhenyang Fu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Lafon-Hughes L. Towards Understanding Long COVID: SARS-CoV-2 Strikes the Host Cell Nucleus. Pathogens 2023; 12:806. [PMID: 37375496 PMCID: PMC10301789 DOI: 10.3390/pathogens12060806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite what its name suggests, the effects of the COVID-19 pandemic causative agent "Severe Acute Respiratory Syndrome Coronavirus-2" (SARS-CoV-2) were not always confined, neither temporarily (being long-term rather than acute, referred to as Long COVID) nor spatially (affecting several body systems). Moreover, the in-depth study of this ss(+) RNA virus is defying the established scheme according to which it just had a lytic cycle taking place confined to cell membranes and the cytoplasm, leaving the nucleus basically "untouched". Cumulative evidence shows that SARS-CoV-2 components disturb the transport of certain proteins through the nuclear pores. Some SARS-CoV-2 structural proteins such as Spike (S) and Nucleocapsid (N), most non-structural proteins (remarkably, Nsp1 and Nsp3), as well as some accessory proteins (ORF3d, ORF6, ORF9a) can reach the nucleoplasm either due to their nuclear localization signals (NLS) or taking a shuttle with other proteins. A percentage of SARS-CoV-2 RNA can also reach the nucleoplasm. Remarkably, controversy has recently been raised by proving that-at least under certain conditions-, SARS-CoV-2 sequences can be retrotranscribed and inserted as DNA in the host genome, giving rise to chimeric genes. In turn, the expression of viral-host chimeric proteins could potentially create neo-antigens, activate autoimmunity and promote a chronic pro-inflammatory state.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay; ; Tel.: +598-2-93779096
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República (CENUR-UdelaR), Salto 50000, Uruguay
| |
Collapse
|