1
|
Volarevic V, Randall Harrell C, Arsenijevic A, Djonov V. An Interplay Between Pericytes, Mesenchymal Stem Cells, and Immune Cells in the Process of Tissue Regeneration. Anal Cell Pathol (Amst) 2025; 2025:4845416. [PMID: 40241723 PMCID: PMC12003036 DOI: 10.1155/ancp/4845416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
Immediately after injury, damaged cells elicit tissue regeneration, a healing process that enables optimal renewal and regrowth of injured tissues. Results obtained in a large number of experimental studies suggested that the cross talk between pericytes, mesenchymal stem cells (MSC), tissue-resident stem cells, and immune cells has a crucially important role in the regeneration of injured tissues. Pericytes, MSCs, and immune cells secrete bioactive factors that influence each other's behavior and function. Immune cells produce inflammatory cytokines and chemokines that influence pericytes' migration, proliferation, and transition to MSC. MSC releases immunoregulatory factors that induce the generation of immunosuppressive phenotype in inflammatory immune cells, alleviating detrimental immune responses in injured tissues. MSC also produces various growth factors that influence the differentiation of tissue-resident stem cells into specific cell lineages, enabling the successful regeneration of injured tissues. A better understanding of molecular mechanisms that regulate crosstalk between pericytes, MSC, and immune cells in injured tissues would enable the design of new therapeutic approaches in regenerative medicine. Accordingly, in this review paper, we summarized current knowledge related to the signaling pathways that are involved in the pericytes' activation, pericytes-to-MSC transition, differentiation of tissue-resident stem cells, and MSC-dependent modulation of immune cell-driven inflammation, which are crucially responsible for regeneration of injured tissues.
Collapse
Affiliation(s)
- Vladislav Volarevic
- Center for Harm Reduction of Biological and Chemical Hazards, Department of Genetics and Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Carl Randall Harrell
- Regenerative Processing Plant, LLC 34176, US Highway 19 N, Palm Harbor, Florida, USA
| | - Aleksandar Arsenijevic
- Center for Harm Reduction of Biological and Chemical Hazards, Department of Genetics and Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2 3012, Bern, Switzerland
| |
Collapse
|
2
|
Roseti L, Cavallo C, Desando G, D’Alessandro M, Grigolo B. Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side. Pharmaceutics 2024; 16:1622. [PMID: 39771600 PMCID: PMC11677864 DOI: 10.3390/pharmaceutics16121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair. Objectives: This review aims to outline biological and clinical advances, from the use of mature adult chondrocytes to cell-derived products, going through progenitor cells derived from bone marrow or adipose tissue and their concentrates for articular cartilage repair. Moreover, it highlights the relevance of gene therapy as a valuable tool for successfully implementing current regenerative treatments, and overcoming the limitations of the local delivery of growth factors. Conclusions: Finally, this review concludes with an outlook on the importance of understanding the role and mechanisms of action of the different cell compounds with a view to implementing personalized treatments.
Collapse
Affiliation(s)
| | - Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.); (G.D.); (M.D.); (B.G.)
| | | | | | | |
Collapse
|
3
|
A-Elgadir TME, Shati AA, Alqahtani SA, Ebrahim HA, Almohaimeed HM, ShamsEldeeen AM, Haidara MA, Kamar SS, Dawood AF, El-Bidawy MH. Mesenchymal stem cells improve cardiac function in diabetic rats by reducing cardiac injury biomarkers and downregulating JAK/STAT/iNOS and iNOS/Apoptosis signaling pathways. Mol Cell Endocrinol 2024; 591:112280. [PMID: 38797354 DOI: 10.1016/j.mce.2024.112280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Cardiovascular complications are prevalent manifestations of type 2 diabetes mellitus (T2DM) and are usually the main cause of death. This study aims to show the underlying mechanisms of the potential therapeutic effect of mesenchymal stem cells (MSCs) on diabetic cardiac dysfunction. Twenty-four male Wistar rats were randomly assigned to one of three groups The control group received standard laboratory chow, and the groups with T2DM received a single dose of 45 mg/kg body weight of streptozotocin (STZ) after 3 weeks of pretreatment with a high-fat diet (HFD). Eight weeks after the diagnosis of T2DM, rats were divided into two groups: the T2DM model group and the T2DM + MSCs group. BM-MSCs were administered systemically at 2 × 106 cells/rat doses. A Significant amelioration in Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and dyslipidemia was noted 2 weeks post-administration of MSCs. Administration of MSCs improved dyslipidemia, the altered cardiac injury biomarkers (p ≤ 0.0001), downregulated Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3)/inducible Nitric oxide synthase (iNOS) and iNOS/Apoptosis signaling pathways. This was associated with improved cardiac dysfunction (impaired left ventricular performance and decreased contractility index). Our results show that MSCs ameliorate cardiac dysfunction associated with diabetic cardiomyopathy by lowering dyslipidemia and insulin resistance, inhibiting oxidative stress, and inflammation, downregulating JAK2/STAT3/iNOS and iNOS/Apoptosis signaling pathways.
Collapse
Affiliation(s)
| | - Ayed A Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saif Aboud Alqahtani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hasnaa A Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Asmaa M ShamsEldeeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Haidara
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samaa S Kamar
- Department of Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Histology, Armed Forces College of Medicine
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Mahmoud H El-Bidawy
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt; Department of BMS, Physiology Division, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
4
|
Zhidkov R, Panin A, Drobyshev A, Demura T, Avraamova S, Aleksandrov P, Kolesnikova A, Darawsheh H, Turkina A, Redko N, Skakunov Y, Karpova E, Brago A, Tsitsiashvili A, Vasil’ev Y. Morphological Evaluation and Immunohistochemical Analysis of the Reparative Potential of the Buccal Fat Pad. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:567. [PMID: 38674213 PMCID: PMC11052332 DOI: 10.3390/medicina60040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: There are many surgical techniques for oroantral communication treatment, one of which is the buccal fat pad. Of particular interest is the high reparative potential of the buccal fat pad, which may be contributed to by the presence of mesenchymal stem cells. The purpose of this work is to evaluate the reparative potential of BFP cells using morphological and immunohistochemical examination. Materials and Methods: 30 BFP samples were provided by the Clinic of Maxillofacial and Plastic Surgery of the Russian University of Medicine (Moscow, Russia) from 28 patients. Morphological examination of 30 BFP samples was performed at the Institute of Clinical Morphology and Digital Pathology of Sechenov University. Hematoxylin-eosin, Masson trichrome staining and immunohistochemical examination were performed to detect MSCs using primary antibodies CD133, CD44 and CD10. Results: During staining with hematoxylin-eosin and Masson's trichrome, we detected adipocytes of white adipose tissue united into lobules separated by connective tissue layers, a large number of vessels of different calibers, as well as the general capsule of BFP. The thin connective tissue layers contained neurovascular bundles. Statistical processing of the results of the IHC examination of the samples using the Mann-Whitney criterion revealed that the total number of samples in which the expression of CD44, CD10 and CD133 antigens was confirmed was statistically significantly higher than the number of samples where the expression was not detected (p < 0.05). Conclusions: During the morphological study of the BFP samples, we revealed statistically significant signs of MSCs presence (p < 0.05), including in the brown fat tissue, which proves the high reparative potential of this type of tissue and can make the BFP a choice option among other autogenous donor materials when eliminating OAC and other surgical interventions in the maxillofacial region.
Collapse
Affiliation(s)
- Roman Zhidkov
- Federal State Budgetary Educational Institution of Higher Education «ROSUNIMED» of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia; (R.Z.); (A.P.); (A.D.); (A.T.)
| | - Andrew Panin
- Federal State Budgetary Educational Institution of Higher Education «ROSUNIMED» of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia; (R.Z.); (A.P.); (A.D.); (A.T.)
| | - Aleksei Drobyshev
- Federal State Budgetary Educational Institution of Higher Education «ROSUNIMED» of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia; (R.Z.); (A.P.); (A.D.); (A.T.)
| | - Tatiana Demura
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (T.D.); (S.A.); (P.A.); (A.K.)
| | - Sofya Avraamova
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (T.D.); (S.A.); (P.A.); (A.K.)
| | - Petr Aleksandrov
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (T.D.); (S.A.); (P.A.); (A.K.)
| | - Anastasia Kolesnikova
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (T.D.); (S.A.); (P.A.); (A.K.)
| | - Hadi Darawsheh
- N.V. Sklifosovskiy Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| | - Anna Turkina
- E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| | - Nicolai Redko
- Federal State Budgetary Educational Institution of Higher Education «ROSUNIMED» of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia; (R.Z.); (A.P.); (A.D.); (A.T.)
| | - Yaroslav Skakunov
- Federal State Budgetary Educational Institution of Higher Education «ROSUNIMED» of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia; (R.Z.); (A.P.); (A.D.); (A.T.)
| | - Elena Karpova
- Federal State Budgetary Educational Institution of Higher Education, Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia;
| | - Anzhela Brago
- Department of Propedeutics of Dental Diseases, Medical Institute, Peoples’ Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia;
| | - Aleksandr Tsitsiashvili
- Federal State Budgetary Educational Institution of Higher Education «ROSUNIMED» of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia; (R.Z.); (A.P.); (A.D.); (A.T.)
| | - Yuriy Vasil’ev
- N.V. Sklifosovskiy Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|