1
|
He C, Huang S, Yi R, Zhang J, Yan N, Kong L, Yu K, Guo Q, Dong F, Liang B, Zhou S, Zhang J. Dynamic revelation of early development in mouse embryo via Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 342:126475. [PMID: 40449461 DOI: 10.1016/j.saa.2025.126475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/18/2025] [Accepted: 05/24/2025] [Indexed: 06/03/2025]
Abstract
Non-invasive embryo quality assessment techniques in clinical practice remain in early developmental phase, highlighting the critical need to expand technical methods and improve evaluation accuracy.This study applies Raman spectroscopy to characterize glucose and lipid metabolic profiles during the early development of mouse embryos, aiming to explore the possibility of both as biomarkers for non-invasive assessment of embryo quality. Through semi-quantitative analysis, this research demonstrate that the average glucose metabolism remains relatively stable from Day 0 to 3 post conception (D0-3), followed by a significant increase in consumption around D3, and robust metabolic activity during D4-D5. The study also confirms the pivotal role of glucose metabolism in facilitating blastocyst formation. Additionally, Raman imaging was employed to visualize distribution of structural components and the dynamic lipid metabolism changes across 1-cell, 2-cell, and 4-cell stages, providing novel insights into quantitative lipidomic analysis of early embryos.
Collapse
Affiliation(s)
- Chenwei He
- Department of Reproductive Medicine, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Shan Huang
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Runxin Yi
- Department of Reproductive Medicine, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Jun Zhang
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Nan Yan
- Department of Reproductive Medicine, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Lingyin Kong
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Kaidi Yu
- Department of Reproductive Medicine, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Qingkai Guo
- Basecare Medical Device Co., Ltd., Suzhou, China
| | | | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Shuai Zhou
- Department of Reproductive Medicine, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| | - Junqiang Zhang
- Department of Reproductive Medicine, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| |
Collapse
|
2
|
Tesarik J. Noninvasive Biomarkers of Human Embryo Developmental Potential. Int J Mol Sci 2025; 26:4928. [PMID: 40430065 PMCID: PMC12112732 DOI: 10.3390/ijms26104928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
There are two types of noninvasive biomarkers of human embryo developmental potential: those based on a direct assessment of embryo morphology over time and those using spent media after embryo in vitro culture as source of information. Both are derived from previously acquired knowledge on different aspects of pre-implantation embryo development. These aspects include embryo morphology and kinetics, chromosomal ploidy status, metabolism, and embryonic gene transcription, translation, and expression. As to the direct assessment of morphology and kinetics, pertinent data can be obtained by analyzing sequential microscopic images of in vitro cultured embryos. Spent media can serve a source of genomic, metabolomic, transcriptomic and proteomic markers. Methods used in the early pioneering studies, such as microscopy, fluorescence in situ hybridization, autoradiography, electrophoresis and immunoblotting, or enzyme-linked immunosorbent assay, are too subjective, invasive, and/or time-consuming. As such, they are unsuitable for the current in vitro fertilization (IVF) practice, which needs objective, rapid, and noninvasive selection of the best embryo for uterine transfer or cryopreservation. This has been made possible by the use of high-throughput techniques such as time-lapse (for direct embryo evaluation), next-generation sequencing, quantitative real-time polymerase chain reaction, high-performance liquid chromatography, nanoparticle tracking analysis, flow cytometry, mass spectroscopy, Raman spectroscopy, near-infrared spectroscopy, and nuclear magnetic resonance spectroscopy (for spent culture media analysis). In this review, individual markers are presented systematically, with each marker's history and current status, including available methodologies, strengths, and limitations, so as to make the essential information accessible to all health professionals, even those whose expertise in the matter is limited.
Collapse
Affiliation(s)
- Jan Tesarik
- MARGen (Molecular Assisted Reproduction and Genetics) Clinic, Calle Gracia, 36, 18002 Granada, Spain
| |
Collapse
|
3
|
Sui M, Si L, Chen Z, Lu Y, Li H. Non-invasive applications of Raman spectroscopy in assisted reproduction. Front Endocrinol (Lausanne) 2025; 16:1577702. [PMID: 40405973 PMCID: PMC12095027 DOI: 10.3389/fendo.2025.1577702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
This review explores the non-invasive applications of Raman spectroscopy in assisted reproductive technology (ART). Raman spectroscopy, a powerful tool for analyzing biological samples, has shown great potential in enhancing ART outcomes through various applications such as sperm quality assessment, oocyte evaluation, and embryo selection. The non-destructive nature and high specificity of this technique enable detailed biochemical analysis at the cellular level, offering valuable insights into cellular processes without harming for the samples. The review highlights recent advancements and studies demonstrating the efficacy of Raman spectroscopy in improving the selection criteria for gametes and embryos, ultimately contributing to higher success rates in ART. Future perspectives on integrating Raman spectroscopy with other technologies to further enhance its applicability in reproductive medicine are also discussed.
Collapse
Affiliation(s)
- Mingxing Sui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lihui Si
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhuoyue Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yingli Lu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongru Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Shibli Abu Raya Y, Aslih N, Atzmon Y, Sharqawi M, Shavit M, Bilgory A, Shalom-Paz E. Non-Male Factor Only-ICSI Can Overcome Oocyte Factor in PCOS Patients. J Clin Med 2025; 14:244. [PMID: 39797326 PMCID: PMC11721918 DOI: 10.3390/jcm14010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Background: In this research, we retrospectively studied the influence of the IVF vs. the ICSI technique on embryo morphokinetics by means of a time-lapse incubator in fresh cycles. Methods: A total of 2645 treatment cycles resulting in ovum pick-up of 11,471 fertilized oocytes were included in the research from 2018 to 2022. The embryos were grouped according to IVF or ICSI. Embryonic development was monitored using a time-lapse incubator, and they were transferred on day 3 or 5. Results: The embryos in the ICSI group developed faster and had less fragmentation. However, fewer 2PNs were achieved and more embryos were discarded compared to IVF. When sibling oocytes treated with either IVF or ICSI were analyzed, we found that ICSI resulted in quicker development and higher KIDScores. Discussion: The anovulation and PCOS subgroups were the primary contributors to the high KIDScores in sibling oocytes, indicating that ICSI might have beneficial effects on oocyte factors, similar to the positive results it provides when male factors are involved. Conclusions: Women with PCOS undergoing IVF had better results when ICSI was used compared to spontaneous IVF. This study reveals that ICSI is superior to IVF in female factor infertility.
Collapse
Affiliation(s)
- Yasmin Shibli Abu Raya
- Gynecological Research Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 3820302, Israel; (N.A.); (Y.A.); (M.S.); (M.S.); (A.B.)
| | - Nardin Aslih
- Gynecological Research Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 3820302, Israel; (N.A.); (Y.A.); (M.S.); (M.S.); (A.B.)
| | - Yuval Atzmon
- Gynecological Research Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 3820302, Israel; (N.A.); (Y.A.); (M.S.); (M.S.); (A.B.)
| | - Moamina Sharqawi
- Gynecological Research Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 3820302, Israel; (N.A.); (Y.A.); (M.S.); (M.S.); (A.B.)
| | - Maya Shavit
- Gynecological Research Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 3820302, Israel; (N.A.); (Y.A.); (M.S.); (M.S.); (A.B.)
| | - Asaf Bilgory
- Gynecological Research Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 3820302, Israel; (N.A.); (Y.A.); (M.S.); (M.S.); (A.B.)
| | - Einat Shalom-Paz
- Gynecological Research Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 3820302, Israel; (N.A.); (Y.A.); (M.S.); (M.S.); (A.B.)
- Ruth and Bruce Rappaport School of Medicine, The Technion Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Zheng C, Zhang L, Huang H, Wang X, Van Schepdael A, Ye J. Raman spectroscopy: A promising analytical tool used in human reproductive medicine. J Pharm Biomed Anal 2024; 249:116366. [PMID: 39029353 DOI: 10.1016/j.jpba.2024.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Over the past few years, there has been growing interest in developing new methods of embryo quality assessment to improve the outcomes of assisted reproductive technologies in the medical field. Raman microscopy as an increasingly promising analytical tool has been widely used in life sciences, biomedicine and "omics" to study molecular, biochemical components, living cells and tissues due to the label-free and non-destructive nature of the imaging technique. This paper reviews the analytical capability of Raman microscopy and applications of Raman spectroscopy technology mainly in reproductive medicine. The purpose of this review is to introduce the Raman spectroscopy technology, application and underlying principles of the method, to provide an intact picture of its uses in biomedical science and reproductive medicine, to offer ideas for its future application, verification and validation. The focus is on the application of Raman spectroscopy in the reproductive medicine field, including the application in gametes, embryos and spent embryo culture media.
Collapse
Affiliation(s)
- Chao Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lumei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hefeng Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Wang X, Wei Q, Huang W, Yin L, Ma T. Can time-lapse culture combined with artificial intelligence improve ongoing pregnancy rates in fresh transfer cycles of single cleavage stage embryos? Front Endocrinol (Lausanne) 2024; 15:1449035. [PMID: 39268241 PMCID: PMC11390367 DOI: 10.3389/fendo.2024.1449035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Purpose With the rapid advancement of time-lapse culture and artificial intelligence (AI) technologies for embryo screening, pregnancy rates in assisted reproductive technology (ART) have significantly improved. However, clinical pregnancy rates in fresh cycles remain dependent on the number and type of embryos transferred. The selection of embryos with the highest implantation potential is critical for embryologists and influences transfer strategies in fertility centers. The superiority of AI over traditional morphological scoring for ranking cleavage-stage embryos based on their implantation potential remains controversial. Methods This retrospective study analyzed 105 fresh embryo transfer cycles at the Centre for Reproductive Medicine from August 2023 to March 2024, following IVF/ICSI treatment at the cleavage stage. All embryos were cultured using time-lapse technology and scored using an automated AI model (iDAScore V2.0). Embryos were categorized into three groups based on the iDAScore V2.0: Group A (8 cells, iDA: 1.0-5.7); Group B (8 cells, iDA: 5.8-8.0); and Group C (>8 cells, iDA: 5.8-8.0). Clinical treatment outcomes, embryonic development, and pregnancy outcomes were analyzed and compared across the groups. Results Baseline characteristics such as patient age, AMH levels, AFC, and basal sex hormones showed no significant differences among the three groups (p > 0.05). The iDAscores were significantly higher in Group C (7.3 ± 0.5) compared to Group B (6.7 ± 0.5) and the iDAscores were significantly higher in Group B (6.7 ± 0.5) compared to Group A (4.8 ± 1.0) (p < 0.001).The mean number of high-quality embryos was highest in Group C (4.7 ± 3.0), followed by Group B (3.6 ± 1.7) and Group A (2.1 ± 1.2) (p < 0.001). There was no statistical difference (p = 0.392) in the ongoing pregnancy rate for single cleavage-stage transfers between Group B (54.5%, 30/55) and Group A (38.1%, 8/21), although there was a tendency for Group B to be higher. Conclusion Combining time-lapse culture with AI scoring may enhance ongoing pregnancy rates in single cleavage-stage fresh transfer cycles.
Collapse
Affiliation(s)
- Xiao Wang
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qipeng Wei
- Department of Reproductive Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Weiyu Huang
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lanlan Yin
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tianzhong Ma
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
7
|
Jiang C, Geng M, Zhang C, She H, Wang D, Wang J, Liu J, Diao F, Cai L, Hu Y. The synergy of morphokinetic parameters and sHLA-G in cleavage embryo enhancing implantation rates. Front Cell Dev Biol 2024; 12:1417375. [PMID: 39081861 PMCID: PMC11286472 DOI: 10.3389/fcell.2024.1417375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/28/2024] [Indexed: 08/02/2024] Open
Abstract
Objective: This study aimed to assess the relationship between implantation and soluble HLA-G (sHLA-G) expression in cleavage embryo culture medium (ECM) in conjunction with early developmental kinetics determined by time-lapse imaging (TLI). Methods: A retrospective, single-center study was conducted involving 238 embryos from 165 patients who underwent Frozen-thawed embryo transfer (FET) using autologous oocytes, with either single or double embryo transfer. TLI morphokinetic parameters (t2, t3, t4, t5, t6, t7, t8, cc2, s2, cc3, s3) of embryos were analyzed, and sHLA-G levels in D3 ECM were measured using an enzyme-linked immunosorbent assay (ELISA). A hierarchical classification model was developed to categorize embryos into five groups (A, B, C, D, E). The correlation between sHLA-G levels, TLI classification of embryos, and embryo implantation was investigated to establish a non-invasive method for evaluating implantation potential. Multivariate logistic regression analysis was performed to identify potential influencing factors, and receiver operating characteristic (ROC) curves were used to evaluate the predictive value for implantation. Results: Multivariate unconditional logistic regression analysis indicated that TLI parameters t5 and s3 and sHLA-G level in ECM were independent risk factors affecting embryo implantation. The implantation rate decreased from TLI classification A to E. The proposed classification model effectively assessed the implantation potential of embryos. The implantation rate was higher in the sHLA-G positive group compared to the sHLA-G negative group (p < 0.001). The expression of sHLA-G in D3 ECM, combined with the TLI classification model, accurately evaluated the implantation potential of embryos with an AUC of 0.876. Conclusion: The integration of cleavage kinetics and embryonic sHLA-G expression could reliably identify embryos with a high likelihood of successful implantation.
Collapse
Affiliation(s)
- Chunyan Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Menghui Geng
- Reproductive Medicine Center of Northern Jiangsu People’s Hospital, Yangzhou, China
- Department of Obstetrics and Gynecology, The 2 Affiliated Hospital and Yuying Chidren’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Can Zhang
- Department of Obstetrics and Gynecology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Hong She
- Reproductive Medicine Center of Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Dalin Wang
- Reproductive Medicine Center of Xu Zhou Maternity and Child Healthcare Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanqiu Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Reproductive Medicine Center of Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
8
|
Chow DJX, Tan TCY, Upadhya A, Lim M, Dholakia K, Dunning KR. Viewing early life without labels: optical approaches for imaging the early embryo†. Biol Reprod 2024; 110:1157-1174. [PMID: 38647415 PMCID: PMC11180623 DOI: 10.1093/biolre/ioae062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Embryo quality is an important determinant of successful implantation and a resultant live birth. Current clinical approaches for evaluating embryo quality rely on subjective morphology assessments or an invasive biopsy for genetic testing. However, both approaches can be inherently inaccurate and crucially, fail to improve the live birth rate following the transfer of in vitro produced embryos. Optical imaging offers a potential non-invasive and accurate avenue for assessing embryo viability. Recent advances in various label-free optical imaging approaches have garnered increased interest in the field of reproductive biology due to their ability to rapidly capture images at high resolution, delivering both morphological and molecular information. This burgeoning field holds immense potential for further development, with profound implications for clinical translation. Here, our review aims to: (1) describe the principles of various imaging systems, distinguishing between approaches that capture morphological and molecular information, (2) highlight the recent application of these technologies in the field of reproductive biology, and (3) assess their respective merits and limitations concerning the capacity to evaluate embryo quality. Additionally, the review summarizes challenges in the translation of optical imaging systems into routine clinical practice, providing recommendations for their future development. Finally, we identify suitable imaging approaches for interrogating the mechanisms underpinning successful embryo development.
Collapse
Affiliation(s)
- Darren J X Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Avinash Upadhya
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Megan Lim
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
9
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
10
|
Tian Y, Li M, Yang J, Chen H, Lu D. Preimplantation genetic testing in the current era, a review. Arch Gynecol Obstet 2024; 309:1787-1799. [PMID: 38376520 DOI: 10.1007/s00404-024-07370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Preimplantation genetic testing (PGT), also referred to as preimplantation genetic diagnosis (PGD), is an advanced reproductive technology used during in vitro fertilization (IVF) cycles to identify genetic abnormalities in embryos prior to their implantation. PGT is used to screen embryos for chromosomal abnormalities, monogenic disorders, and structural rearrangements. DEVELOPMENT OF PGT Over the past few decades, PGT has undergone tremendous development, resulting in three primary forms: PGT-A, PGT-M, and PGT-SR. PGT-A is utilized for screening embryos for aneuploidies, PGT-M is used to detect disorders caused by a single gene, and PGT-SR is used to detect chromosomal abnormalities caused by structural rearrangements in the genome. PURPOSE OF REVIEW In this review, we thoroughly summarized and reviewed PGT and discussed its pros and cons down to the minutest aspects. Additionally, recent studies that highlight the advancements of PGT in the current era, including their future perspectives, were reviewed. CONCLUSIONS This comprehensive review aims to provide new insights into the understanding of techniques used in PGT, thereby contributing to the field of reproductive genetics.
Collapse
Affiliation(s)
- Yafei Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- MOE Engineering Research Center of Gene Technology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200433, China
| | - Mingan Li
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian, 223800, Jiangsu Province, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, 400020, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Daru Lu
- MOE Engineering Research Center of Gene Technology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200433, China.
- NHC Key Laboratory of Birth Defects and Reproductive Health, (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, 400020, China.
| |
Collapse
|