1
|
李 虎, 于 年, 李 熙, 唐 晓, 孙 雅, 司 超, 张 俊, 常 蓓. [Effects of cell area on single odontoblast polarization and differentiation via microarray technology]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2025; 43:183-189. [PMID: 40132963 PMCID: PMC11960410 DOI: 10.7518/hxkq.2025.2024392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/17/2025] [Indexed: 03/27/2025]
Abstract
OBJECTIVES This study aimed to explore the impact of cell spreading area on odontoblast polarization and differentiation using micropatterned surfaces ge-nerated by photolithography. METHODS Micropatterned surfaces with differential adhesive properties were prepared using polyethylene glycol diacrylate (PEGDA)-ba-sed photolithography. Human dental pulp stem cells (hD-PSCs) were isolated into single cells and cultured on micropatterned surfaces with areas of 1 800, 2 700, and 3 600 μm2. Immunofluorescence staining was used to observe cell morphology and analyze the relocating of the golgi apparatus and nucleus. Alkaline phosphatase staining was preformed to examine odontogenic differentiation. RESULTS The hDPSCs were successfully isolated and cultured on micropatterned surfaces mimicking the morphology of polarized odontoblasts. Phalloidin staining confirmed that the isolated hDPSCs successfully recapitulated the morphology of predesigned micropatterns. Immunofluorescence staining showed that the polarization and differentiation levels of the hDPSCs with a 3600 μm2 area were significantly higher than those with 1 800 and 2 700 μm2 areas (P<0.05). CONCLUSIONS The polarization and differentiation of single hDPSCs increased with the cell areas on micropatterned surfaces.
Collapse
|
2
|
Parry RA, Mir IA, Bhat BA, Hussain MU, Ashraf S, Zaman GS, Bashir N, Vats S, Ganie SA. Exploring the cytotoxic effects of bioactive compounds from Alcea rosea against stem cell driven colon carcinogenesis. Sci Rep 2025; 15:5892. [PMID: 39966572 PMCID: PMC11836269 DOI: 10.1038/s41598-025-89714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Seven compounds were isolated from ethyl acetate extract of Alcea rosea and were examined for their cytotoxicity against HCT116, HT29 and SW480 colon cancer cells. It was found that two compounds (C4 and C5) exhibited strong anti-colon cancer activities. These two compounds were used to study their properties that include MTT activity (with IC50 of C4 as 74.71, 129.0 and 131.4 µg/ml in HCT116, HT29 and SW480 respectively, whereas IC50 of C5 as 128.1, 168.4 and 225.8 µg/ml in HCT116, HT29 and SW480 cells respectively), colony formation activity, wound healing activity, spheroid formation activity, DAPI-PI staining, acridine-orange and ethidium bromide staining, ROS measurement, and rhodamine-123 staining in both HCT116 and HT29 colon cancer cells. Both the compounds showed significant increase in apoptosis as visualized by 4',6-diamidino-2-phenylindol/propidium iodide (DAPI-PI) and acridine orange/ethidium bromide (AO/EtBr) staining. The induction of apoptosis was further confirmed by the expressions of cleaved PARP and caspase 3. ROS generation and its effect on MMP were measured by staining cells with Dichloro-dihydro-fluorescein diacetate (DCFH-DA) and Rhodamine. Expression levels of EMT associated markers like Cyclin D1, Slug, Vimentin, and E-Cadherin were also studied. Both the compounds down regulate protein levels of Slug, Cyclin D1, and Vimentin in a concentration-dependent manner. Eeffect of C4 and C5 compounds on key signaling protein like Wnt3a, Notch1, and Shh were evaluated. Additionally, mRNA levels of these genes were also analyzed. C4 exhibited the best binding affinity when docked with Shh and Wnt3a and Notch1. Similarly, C5 exhibited - 8.8, -8.2 and - 7.6 kcal⋅mol- 1 with Shh, Wnt3a and Notch1. The present findings provide insight and immense scientific support and integrity to a piece of indigenous knowledge. However, validation in living organisms is necessary before progressing to clinical trials and advancing it into a marketable pharmaceutical product.
Collapse
Affiliation(s)
- Ruhban Ansar Parry
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, 190006, India
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India
| | - Irfan Ahmad Mir
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | | | - Mahboob Ul Hussain
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Suhail Ashraf
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Gaffar Sarwar Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Nasreena Bashir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Sharad Vats
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India.
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
3
|
Kondo T, Thaweesapphithak S, Ambo S, Otake K, Ohori-Morita Y, Mori S, Vinaikosol N, Porntaveetus T, Egusa H. Fabrication of Hard Tissue Constructs from Induced Pluripotent Stem Cells for Exploring Mechanisms of Hereditary Tooth/Skeletal Dysplasia. Int J Mol Sci 2025; 26:804. [PMID: 39859513 PMCID: PMC11766037 DOI: 10.3390/ijms26020804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Tooth/skeletal dysplasia, such as hypophosphatasia (HPP), has been extensively studied. However, there are few definitive treatments for these diseases owing to the lack of an in vitro disease model. Cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) demonstrate a pathological phenotype. This study aimed to establish a method for fabricating hard tissue-forming cells derived from human iPSCs (hiPSCs) for the pathological analysis of tooth/skeletal dysplasia. Healthy (HLTH) adult-derived hiPSCs were cultured in a hard tissue induction medium (HM) with or without retinoic acid (RA) under 3D culture conditions, and mineralization and expression of dentinogenesis- and osteogenesis-related markers in 3D hiPSC constructs were evaluated. hiPSCs derived from patients with hypophosphatasia were also cultured in HM with RA. HLTH-derived hiPSCs formed mineralized 3D constructs and showed increased expression of dentinogenesis- and osteogenesis-related markers; addition of RA promoted the expression of these markers in hiPSC constructs. HPP-derived hiPSC constructs showed lower mineralization and expression of dentinogenesis- and osteogenesis-related markers than HLTH-derived hiPSCs, indicating an impaired ability to differentiate into odontoblasts and osteoblasts. This method for fabricating 3D hiPSC constructs allows for simultaneous assessment of dentinogenesis and osteogenesis, with HPP-derived hiPSC constructs recapitulating pathological phenotypes.
Collapse
Affiliation(s)
- Takeru Kondo
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
- Department of Next-Generation Dental Material Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Sermporn Thaweesapphithak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (S.T.); (T.P.)
| | - Sara Ambo
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
| | - Koki Otake
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
| | - Yumi Ohori-Morita
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
| | - Satomi Mori
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
| | - Naruephorn Vinaikosol
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (S.T.); (T.P.)
| | - Hiroshi Egusa
- Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (S.A.); (K.O.); (Y.O.-M.); (S.M.); (N.V.)
- Department of Next-Generation Dental Material Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
4
|
Wang X, Sun K, Xu Z, Chen Z, Wu W. Roles of SP/KLF transcription factors in odontoblast differentiation: From development to diseases. Oral Dis 2024; 30:3745-3760. [PMID: 38409677 DOI: 10.1111/odi.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES A zinc-finger transcription factor family comprising specificity proteins (SPs) and Krüppel-like factor proteins (KLFs) plays an important role in dentin development and regeneration. However, a systematic regulatory network involving SPs/KLFs in odontoblast differentiation has not yet been described. This review examined the expression patterns of SP/KLF gene family members and their current known functions and mechanisms in odontoblast differentiation, and discussed prospective research directions for further exploration of mechanisms involving the SP/KLF gene family in dentin development. MATERIALS AND METHODS Relevant literature on SP/KLF gene family members and dentin development was acquired from PubMed and Web of Science. RESULTS We discuss the expression patterns, functions, and related mechanisms of eight members of the SP/KLF gene family in dentin development and genetic disorders with dental problems. We also summarize current knowledge about their complementary or synergistic actions. Finally, we propose future research directions for investigating the mechanisms of dentin development. CONCLUSIONS The SP/KLF gene family plays a vital role in tooth development. Studying the complex complementary or synergistic interactions between SPs/KLFs is helpful for understanding the process of odontoblast differentiation. Applications of single-cell and spatial multi-omics may provide a more complete investigation of the mechanism involved in dentin development.
Collapse
Affiliation(s)
- Xuefei Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Kaida Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zekai Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Hasegawa H, Shimada K, Ochiai T, Okada Y. Developmental Anomalies in Human Teeth: Odontoblastic Differentiation in Hamartomatous Calcifying Hyperplastic Dental Follicles Presenting with DSP, Nestin, and HES1. J Dev Biol 2024; 12:7. [PMID: 38390958 PMCID: PMC10885117 DOI: 10.3390/jdb12010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Hyperplastic dental follicles (HDFs) represent odontogenic hamartomatous lesions originating from the pericoronal tissues and are often associated with impacted or embedded teeth. These lesions may occasionally feature unique calcifying bodies, known as calcifying whorled nodules (CWNs), characterized by stromal cells arranged in a whorled or spiral fashion. CWNs are typically observed in multiple calcifying hyperplastic dental follicles or regional odontodysplasia. In our study, we examined 40 cases of HDFs, including nine instances with characteristics of CWNs, referred to as calcifying hyperplastic dental follicles (CHDFs), which are infrequently accompanied by odontodysplasia. The median ages of the HDFs and CHDFs were 16 (ranging from 3 to 66) and 15 (ranging from 11 to 50) years, respectively. The lower third molars were the most frequently affected by HDSFs and CHDFs, followed by the upper canines. A histological examination was conducted on all 40 cases, with an immunohistochemical analysis performed on 21 of them. Among the cases with CWN, nine affected a single embedded tooth, with one exception. CWNs exhibited diverse calcifications featuring sparse or entirely deposited psammoma bodies, and some displayed dentinoid formation. Immunohistochemically, the stromal cells of HDFs were frequently positive for CD56 and nestin. By contrast, CWNs were negative for CD56 but positive for nestin as well as hairy and enhancer split 1 (HES1), with a few dentin sialoprotein (DSP)-positive calcified bodies. Our results revealed that hamartomatous CHDFs can impact multiple and single-embedded teeth. CWNs composed of nestin and HES1-positive ectomesenchymal cells demonstrated the potential to differentiate into odontoblasts and contribute to dentin matrix formation under the influence of HES1. This study is the first report documenting odontoblastic differentiation in HDFs. The rare occurrence of HDFs and CHDFs contributes to limited comprehension. To prevent misdiagnosis, a better understanding of these conditions is necessary.
Collapse
Affiliation(s)
- Hiromasa Hasegawa
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto 390-8621, Japan
- Department of Clinical Pathophysiology, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Katsumitsu Shimada
- Department of Clinical Pathophysiology, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Takanaga Ochiai
- Department of Oral Pathology, Division of Oral Pathogenesis & Disease Control, Asahi University School of Dentistry, Mizuho 501-0296, Japan
| | - Yasuo Okada
- Department of Pathology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan
| |
Collapse
|