1
|
Ng QX, Tang ASP, Chan KE, Chan HW, Howard N, Koh GCH. Lived experiences of patients, families and caregivers affected by inherited retinal diseases: A qualitative systematic review. Disabil Health J 2025; 18:101826. [PMID: 40148154 DOI: 10.1016/j.dhjo.2025.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Inherited retinal diseases (IRDs) are a heterogeneous group of genetic disorders, and a leading cause of vision impairment or blindness, affecting millions worldwide. Despite advances in understanding its phenotype, the physical and psychological impacts of IRDs on patients and their families and caregivers remain underexplored. OBJECTIVE This review thus aimed to summarize the existing literature in this area. METHODS Following PRISMA guidelines and using search terms such as "inherited retinal disease", "psychological impact", "social impact", and "qualitative research", a systematic search was conducted across PubMed Central, EMBASE, Scopus, and PsycINFO databases up to February 29, 2024, for qualitative studies on the impact of IRDs. The findings were then synthesized narratively to provide a cohesive interpretation. RESULTS A total of 20 studies involving 474 participants across six countries (Australia, Belgium, Italy, Sweden, the UK, and the US) were included. Key themes included the significant impact on daily living and independence, work and professional life, coping strategies and resilience, and the emotional burden on families and caregivers. Genetic testing and its implications (reproductive decisions and insurance discrimination) also emerged as an area of concern. IRDs profoundly affect patients and their families and caregivers, influencing daily life, well-being, and societal participation. CONCLUSIONS Despite the challenges, resilience and adaptability are prominent, and the findings emphasize the need for comprehensive care that includes psychological support, work adjustments and policies that address the needs of this population. Understanding these quality-of-life issues and areas of unmet need is relevant for healthcare providers, policymakers, and researchers globally.
Collapse
Affiliation(s)
- Qin Xiang Ng
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Health Services Research Unit, Singapore General Hospital, Singapore.
| | - Ansel Shao Pin Tang
- NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai En Chan
- NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hwei Wuen Chan
- NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Ophthalmology, National University Hospital, Singapore
| | - Natasha Howard
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Gerald Choon Huat Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Bernardo-Colón A, Bighinati A, Parween S, Debnath S, Piano I, Adani E, Corsi F, Gargini C, Vergara N, Marigo V, Patricia Becerra S. H105A peptide eye drops promote photoreceptor survival in murine and human models of retinal degeneration. COMMUNICATIONS MEDICINE 2025; 5:81. [PMID: 40118996 PMCID: PMC11928584 DOI: 10.1038/s43856-025-00789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Photoreceptor death leads to inherited blinding retinal diseases, such as retinitis pigmentosa (RP). As disease progression often outpaces therapeutic advances, developing effective treatments is urgent. This study evaluates the efficacy of small peptides derived from pigment epithelium-derived factor (PEDF), which are known to restrict common cell death pathways associated with retinal diseases. METHODS We tested chemically synthesized peptides (17-mer and H105A) with affinity for the PEDF receptor, PEDF-R, delivered as eye drops to two RP mouse models: rd10 (phosphodiesterase 6b mutation) and RhoP23H/+ (rhodopsin P23H mutation). Additionally, we engineered AAV-H105A vectors for intravitreal delivery in RhoP23H/+ mice. To assess peptide effects in human tissue, we used retinal organoids exposed to cigarette smoke extract, a model of oxidative stress. Photoreceptor survival, morphology and function were evaluated. RESULTS Here we show that peptides 17-mer and H105A delivered via eye drops successfully reach the retina, promote photoreceptor survival, and improve retinal function in both RP mouse models. Intravitreal delivery of a AAV-H105A vector delays photoreceptor degeneration in RhoP23H/+ mice up to six months. In human retinal organoids, peptide H105A specifically prevents photoreceptor death induced by oxidative stress, a contributing factor to RP progression. CONCLUSIONS PEDF peptide-based eye drops offer a promising, minimally invasive therapy to prevent photoreceptor degeneration in retinal disorders, with a favorable safety profile.
Collapse
Grants
- Z01 EY000306 Intramural NIH HHS
- Intramural Research Program of the National Eye Institute, National Institutes of Health, United States of America (Project #EY000306, SPB); the Prevention of Blindness Society (SPB); Fondazione Telethon (Project #GGP19113, VM), the National Center for “Gene Therapy and Drugs based on RNA Technology” cod. Progetto CN00000041 and “Health Extended Alliance for Innovative Therapies, Advanced Lab-research, and Integrated Approaches of Precision Medicine - HEAL ITALIA” tematica 6 “Innovative diagnostics and therapies in precision medicine” cod. Progetto PE0000019 PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 “Istruzione Ricerca” COMPONENTE 2, “Dalla ricerca all’impresa” INVESTIMENTO 1.4, “Potenziamento strutture di ricerca e creazione di "campioni nazionali di R&S” su alcune Key enabling technologies”, finanziato dall’Unione europea – NextGenerationEU (VM and AB); The CellSight Development Fund (NV); and a Challenge Grant to the Department of Ophthalmology at the University of Colorado from Research to Prevent Blindness (NV).
Collapse
Affiliation(s)
- Alexandra Bernardo-Colón
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Shama Parween
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
| | - Subrata Debnath
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Corsi
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Claudia Gargini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
- Gates Center for Regenerative Medicine, Linda Crnic Institute for Down Syndrome and University of Colorado Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Ng QX, Chan HW, Lim RBT, Koh GCH. “This is life”: An interpretative phenomenological analysis of the lived experience of working-age adults with inherited retinal diseases in Singapore. Disabil Health J 2025:101819. [DOI: 10.1016/j.dhjo.2025.101819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
4
|
Du Y, Shen Y. Progress in photoreceptor replacement therapy for retinal degenerative diseases. CELL INSIGHT 2025; 4:100223. [PMID: 39877255 PMCID: PMC11773227 DOI: 10.1016/j.cellin.2024.100223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 01/31/2025]
Abstract
Retinal degenerative diseases encompass a diverse range of eye conditions that result in blindness, many due to photoreceptor dysfunction and loss. Regrettably, current clinical treatments are frequently not overly effective. However, photoreceptor transplantation shows promise as a potential therapy for late-stage retinal degenerative diseases. This article will review the various donor cell sources for this transplantation, as well as the mechanisms and factors that impact donor cell integration and material transfer, donor cell maturation, and other auxiliary methods that can be combined with photoreceptor transplantation to treat these degenerative retinal diseases.
Collapse
Affiliation(s)
- Yuxin Du
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
5
|
Moseley J, Leest T, Larsson K, Magrelli A, Stoyanova-Beninska V. Inherited retinal dystrophies and orphan designations in the European Union. Eur J Ophthalmol 2024; 34:1631-1641. [PMID: 38500388 PMCID: PMC11542323 DOI: 10.1177/11206721241236214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Inherited Retinal Dystrophies (IRD) are diverse rare diseases that affect the retina and lead to visual impairment or blindness. Research in this field is ongoing, with over 60 EU orphan medicinal products designated in this therapeutic area by the Committee for Orphan Medicinal Products (COMP) at the European Medicines Agency (EMA). Up to now, COMP has used traditional disease terms, like retinitis pigmentosa, for orphan designation regardless of the product's mechanism of action. The COMP reviewed the designation approach for IRDs taking into account all previous Orphan Designations (OD) experience in IRDs, the most relevant up to date scientific literature and input from patients and clinical experts. Following the review, the COMP decided that there should be three options available for orphan designation concerning the condition: i) an amended set of OD groups for therapies that might be used in a broad spectrum of conditions, ii) a gene-specific designation for targeted therapies, and iii) an occasional term for products that do not fit in the above two categories. The change in the approach to orphan designation in IRDs caters for different scenarios to allow an optimum approach for future OD applications including the option of a gene-specific designation. By applying this new approach, the COMP increases the regulatory clarity, efficiency, and predictability for sponsors, aligns EU regulatory tools with the latest scientific and medical developments in the field of IRDs, and ensures that all potentially treatable patients will be included in the scope of an OD.
Collapse
Affiliation(s)
- Jane Moseley
- European Medicines Agency, Amsterdam, The Netherlands
| | - Tim Leest
- Committee for Orphan Medicinal Products at the European Medicines Agency, Amsterdam, The Netherlands
- Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Armando Magrelli
- Committee for Orphan Medicinal Products at the European Medicines Agency, Amsterdam, The Netherlands
- National Center for Drug Research and Evaluation- Istituto Superiore di Sanità, Rome, Italy
| | - Violeta Stoyanova-Beninska
- Committee for Orphan Medicinal Products at the European Medicines Agency, Amsterdam, The Netherlands
- Medicines Evaluation Board (MEB), Utrecht, The Netherlands
| |
Collapse
|
6
|
Matczyńska E, Szymańczak R, Stradomska K, Łyszkiewicz P, Jędrzejowska M, Kamińska K, Beć-Gajowniczek M, Suchecka E, Zagulski M, Wiącek M, Wylęgała E, Machalińska A, Mossakowska M, Puzianowska-Kuźnicka M, Teper S, Boguszewska-Chachulska A. Whole-Exome Analysis for Polish Caucasian Patients with Retinal Dystrophies and the Creation of a Reference Genomic Database for the Polish Population. Genes (Basel) 2024; 15:1011. [PMID: 39202371 PMCID: PMC11353931 DOI: 10.3390/genes15081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
We present the results of the first study of a large cohort of patients with inherited retinal dystrophies (IRD) performed for the Polish population using whole-exome sequencing (WES) in the years 2016-2019. Moreover, to facilitate such diagnostic analyses and enable future application of gene therapy and genome editing for IRD patients, a Polish genomic reference database (POLGENOM) was created based on whole-genome sequences of healthy Polish Caucasian nonagenarians and centenarians. The newly constructed database served as a control, providing a comparison for variant frequencies in the Polish population. The diagnostic yield for the selected group of IRD patients reached 64.9%. The study uncovered the most common pathogenic variants in ABCA4 and USH2A in the European population, along with several novel causative variants. A significant frequency of the ABCA4 complex haplotype p.(Leu541Pro; Ala1038Val) was observed, as well as that of the p.Gly1961Glu variant. The first VCAN causative variant NM_004385.5:c.4004-2A>G in Poland was found and described. Moreover, one of the first patients with the RPE65 causative variants was identified, and, in consequence, could receive the dedicated gene therapy. The availability of the reference POLGENOM database enabled comprehensive variant characterisation during the NGS data analysis, confirming the utility of a population-specific genomic database for enhancing diagnostic accuracy. Study findings suggest the significance of genetic testing in elder patients with unclear aetiology of eye diseases. The combined approach of NGS and the reference genomic database can improve the diagnosis, management, and future treatment of IRDs.
Collapse
Affiliation(s)
- Ewa Matczyńska
- Genomed S.A., 02-971 Warsaw, Poland
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | | | | | | | | | | | | | | | | | - Marta Wiącek
- First Department of Ophthalmology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Machalińska
- First Department of Ophthalmology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Małgorzata Mossakowska
- Study on Ageing and Longevity, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Sławomir Teper
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Scientific Research, Branch in Bielsko-Biala, Medical University of Silesia, 43-300 Bielsko-Biała, Poland
| | | |
Collapse
|
7
|
Bernardo-Colón A, Bighinati A, Parween S, Debnath S, Piano I, Adani E, Corsi F, Gargini C, Vergara N, Marigo V, Becerra SP. H105A peptide eye drops promote photoreceptor survival in murine and human models of retinal degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602890. [PMID: 39109177 PMCID: PMC11302621 DOI: 10.1101/2024.07.10.602890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Photoreceptor death causes blinding inheritable retinal diseases, such as retinitis pigmentosa (RP). As disease progression often outpaces therapeutic advances, finding effective treatments is urgent. This study focuses on developing a targeted approach by evaluating the efficacy of small peptides derived from pigment epithelium-derived factor (PEDF), known to restrict common cell death pathways associated with retinal diseases. Peptides with affinity for the PEDF receptor, PEDF-R, (17-mer and H105A) delivered via eye drops reached the retina, efficiently promoted photoreceptor survival, and improved retinal function in RP mouse models based on both the rd10 mutation and the rhodopsin P23H mutation. Additionally, intravitreal delivery of AAV-H105A vectors delayed photoreceptor degeneration in the latter RP mouse model. Furthermore, peptide H105A specifically prevented photoreceptor death induced by oxidative stress, a contributing factor to RP progression, in human retinal organoids. This promising approach for peptide eye drop delivery holds significant potential as a therapeutic for preventing photoreceptor death in retinal disorders, offering a high safety profile, low invasiveness and multiple delivery options.
Collapse
Affiliation(s)
- Alexandra Bernardo-Colón
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health; Bethesda, MD, USA
| | - Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia; 41125 Modena, Italy
| | - Shama Parween
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
| | - Subrata Debnath
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health; Bethesda, MD, USA
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa; 56126 Pisa, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia; 41125 Modena, Italy
| | - Francesca Corsi
- Department of Pharmacy, University of Pisa; 56126 Pisa, Italy
| | - Claudia Gargini
- Department of Pharmacy, University of Pisa; 56126 Pisa, Italy
| | - Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
- Gates Center for Regenerative Medicine, Linda Crnic Institute for Down Syndrome and University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia; 41125 Modena, Italy
| | - S. Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health; Bethesda, MD, USA
| |
Collapse
|
8
|
Stoddart PR, Begeng JM, Tong W, Ibbotson MR, Kameneva T. Nanoparticle-based optical interfaces for retinal neuromodulation: a review. Front Cell Neurosci 2024; 18:1360870. [PMID: 38572073 PMCID: PMC10987880 DOI: 10.3389/fncel.2024.1360870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Degeneration of photoreceptors in the retina is a leading cause of blindness, but commonly leaves the retinal ganglion cells (RGCs) and/or bipolar cells extant. Consequently, these cells are an attractive target for the invasive electrical implants colloquially known as "bionic eyes." However, after more than two decades of concerted effort, interfaces based on conventional electrical stimulation approaches have delivered limited efficacy, primarily due to the current spread in retinal tissue, which precludes high-acuity vision. The ideal prosthetic solution would be less invasive, provide single-cell resolution and an ability to differentiate between different cell types. Nanoparticle-mediated approaches can address some of these requirements, with particular attention being directed at light-sensitive nanoparticles that can be accessed via the intrinsic optics of the eye. Here we survey the available known nanoparticle-based optical transduction mechanisms that can be exploited for neuromodulation. We review the rapid progress in the field, together with outstanding challenges that must be addressed to translate these techniques to clinical practice. In particular, successful translation will likely require efficient delivery of nanoparticles to stable and precisely defined locations in the retinal tissues. Therefore, we also emphasize the current literature relating to the pharmacokinetics of nanoparticles in the eye. While considerable challenges remain to be overcome, progress to date shows great potential for nanoparticle-based interfaces to revolutionize the field of visual prostheses.
Collapse
Affiliation(s)
- Paul R. Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - James M. Begeng
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Tong
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
9
|
Du X, Butler AG, Chen HY. Cell-cell interaction in the pathogenesis of inherited retinal diseases. Front Cell Dev Biol 2024; 12:1332944. [PMID: 38500685 PMCID: PMC10944940 DOI: 10.3389/fcell.2024.1332944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.
Collapse
Affiliation(s)
| | | | - Holly Y. Chen
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|