1
|
Zhe X, Ma H, Zhang W, Ding R, Hao F, Gao Y, Uri G, Jiri G, Jiri G, Liu D. Scriptaid Improves Cashmere Goat Embryo Reprogramming by Affecting Donor Cell Pluripotency Molecule NANOG Expression. Animals (Basel) 2025; 15:1022. [PMID: 40218415 PMCID: PMC11988105 DOI: 10.3390/ani15071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Currently, the efficiency of somatic cell nuclear transfer (SCNT) technology is relatively low, primarily owing to reprogramming abnormalities in donor cells or reconstructed embryos. Using histone deacetylase inhibitor (HDACi) to artificially alter the epigenetic modifications of donor cells and improve the reprogramming ability of reconstructed embryos is effective in improving nuclear transfer efficiency. In this study, we used Albas cashmere goat cells as donor cells, treated them with Scriptaid, and constructed embryos using SCNT. The results suggest that donor cell treatment with Scriptaid significantly increased the cellular histone acetylation modification level, perturbed the expression of the pluripotency molecule NANOG, altered the reprogramming ability of embryos, and increased the developmental rate of SCNT-reconstructed embryos. Scriptaid inhibited donor cell proliferation, induced apoptosis, and blocked the G0/G1 phase of the cell cycle. These results provide a new research direction for improving SCNT efficiency and a new perspective in the fields of regenerative medicine, agriculture, and animal husbandry.
Collapse
Affiliation(s)
- Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Hairui Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Wenqi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Rui Ding
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Yuan Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
- Alxa League Animal Quarantine Technology Service Center, Inner Mongolia, Alxa 750300, China
| | - Gumara Uri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Gellegen Jiri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Garangtu Jiri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| |
Collapse
|
2
|
Zeng R, Huang X, Fu W, Ji W, Cai W, Xu M, Lan D. Construction of Lentiviral Vectors Carrying Six Pluripotency Genes in Yak to Obtain Yak iPSC Cells. Int J Mol Sci 2024; 25:9431. [PMID: 39273379 PMCID: PMC11394755 DOI: 10.3390/ijms25179431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Yak is an excellent germplasm resource on the Tibetan Plateau and is able to live in high-altitude areas with hypoxic, cold, and harsh environments. Studies on induced pluripotent stem cells (iPSCs) in large ruminants commonly involve a combination strategy involving six transcription factors, Oct4, Sox2, Klf4, c-Myc, Nanog, and Lin28 (OSKMNL). This strategy tends to utilize genes from the same species to optimize pluripotency maintenance. In this study, we cloned the six pluripotency genes (OSKMNL) from yak and constructed a multi-cistronic lentiviral vector carrying these genes. This vector efficiently delivered the genes into yak fibroblasts, aiming to promote the reprogramming process. We verified that the treated cells had several pluripotency characteristics, marking the first successful construction of a lentiviral system carrying yak pluripotency genes. This achievement lays the foundation for subsequent establishment of yak iPSCs and holds significant implications for yak-breed improvement and germplasm-resource conservation.
Collapse
Affiliation(s)
- Ruilin Zeng
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xianpeng Huang
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wenhui Ji
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wenyi Cai
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Meng Xu
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
3
|
Neira JA, Conrad JV, Rusteika M, Chu LF. The progress of induced pluripotent stem cells derived from pigs: a mini review of recent advances. Front Cell Dev Biol 2024; 12:1371240. [PMID: 38979033 PMCID: PMC11228285 DOI: 10.3389/fcell.2024.1371240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
Pigs (Sus scrofa) are widely acknowledged as an important large mammalian animal model due to their similarity to human physiology, genetics, and immunology. Leveraging the full potential of this model presents significant opportunities for major advancements in the fields of comparative biology, disease modeling, and regenerative medicine. Thus, the derivation of pluripotent stem cells from this species can offer new tools for disease modeling and serve as a stepping stone to test future autologous or allogeneic cell-based therapies. Over the past few decades, great progress has been made in establishing porcine pluripotent stem cells (pPSCs), including embryonic stem cells (pESCs) derived from pre- and peri-implantation embryos, and porcine induced pluripotent stem cells (piPSCs) using a variety of cellular reprogramming strategies. However, the stabilization of pPSCs was not as straightforward as directly applying the culture conditions developed and optimized for murine or primate PSCs. Therefore, it has historically been challenging to establish stable pPSC lines that could pass stringent pluripotency tests. Here, we review recent advances in the establishment of stable porcine PSCs. We focus on the evolving derivation methods that eventually led to the establishment of pESCs and transgene-free piPSCs, as well as current challenges and opportunities in this rapidly advancing field.
Collapse
Affiliation(s)
- Jaime A Neira
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Li-Fang Chu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
4
|
Li M, Guo X, Cheng L, Zhang H, Zhou M, Zhang M, Yin Z, Guo T, Zhao L, Liu H, Liang X, Li R. Porcine Kidney Organoids Derived from Naïve-like Embryonic Stem Cells. Int J Mol Sci 2024; 25:682. [PMID: 38203853 PMCID: PMC10779635 DOI: 10.3390/ijms25010682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
The scarcity of donor kidneys greatly impacts the survival of patients with end-stage renal failure. Pigs are increasingly becoming potential organ donors but are limited by immunological rejection. Based on the human kidney organoid already established with the CHIR99021 and FGF9 induction strategy, we generated porcine kidney organoids from porcine naïve-like ESCs (nESCs). The derived porcine organoids had a tubule-like constructure and matrix components. The porcine organoids expressed renal markers including AQP1 (proximal tubule), WT1 and PODO (podocyte), and CD31 (vascular endothelial cells). These results imply that the organoids had developed the majority of the renal cell types and structures, including glomeruli and proximal tubules. The porcine organoids were also identified to have a dextran absorptive function. Importantly, porcine organoids have a certain abundance of vascular endothelial cells, which are the basis for investigating immune rejection. The derived porcine organoids might serve as materials for immunosuppressor screening for xenotransplantation.
Collapse
Affiliation(s)
- Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (M.L.); (X.G.); (L.C.); (H.Z.); (M.Z.); (M.Z.); (Z.Y.); (T.G.); (L.Z.); (H.L.)
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiyun Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (M.L.); (X.G.); (L.C.); (H.Z.); (M.Z.); (M.Z.); (Z.Y.); (T.G.); (L.Z.); (H.L.)
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Linxin Cheng
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (M.L.); (X.G.); (L.C.); (H.Z.); (M.Z.); (M.Z.); (Z.Y.); (T.G.); (L.Z.); (H.L.)
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (M.L.); (X.G.); (L.C.); (H.Z.); (M.Z.); (M.Z.); (Z.Y.); (T.G.); (L.Z.); (H.L.)
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (M.L.); (X.G.); (L.C.); (H.Z.); (M.Z.); (M.Z.); (Z.Y.); (T.G.); (L.Z.); (H.L.)
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (M.L.); (X.G.); (L.C.); (H.Z.); (M.Z.); (M.Z.); (Z.Y.); (T.G.); (L.Z.); (H.L.)
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhibao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (M.L.); (X.G.); (L.C.); (H.Z.); (M.Z.); (M.Z.); (Z.Y.); (T.G.); (L.Z.); (H.L.)
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Tianxu Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (M.L.); (X.G.); (L.C.); (H.Z.); (M.Z.); (M.Z.); (Z.Y.); (T.G.); (L.Z.); (H.L.)
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (M.L.); (X.G.); (L.C.); (H.Z.); (M.Z.); (M.Z.); (Z.Y.); (T.G.); (L.Z.); (H.L.)
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Han Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (M.L.); (X.G.); (L.C.); (H.Z.); (M.Z.); (M.Z.); (Z.Y.); (T.G.); (L.Z.); (H.L.)
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China;
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (M.L.); (X.G.); (L.C.); (H.Z.); (M.Z.); (M.Z.); (Z.Y.); (T.G.); (L.Z.); (H.L.)
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|