1
|
Wang C, Huang Y, Li L, Huang X, Huang Y, Fang X, Long Y. Antiviral Therapy-Induced Changes in Long Non-Coding RNA Expression Profiles in Umbilical Cord Blood and Placental Tissues of Hepatitis B Virus-Infected Pregnant Women. Int J Womens Health 2025; 17:835-844. [PMID: 40123756 PMCID: PMC11927581 DOI: 10.2147/ijwh.s511524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
Background Hepatitis B virus (HBV) is a major global health concern, with maternal-fetal transmission being the primary route of transmission, which can lead to chronic HBV infection in newborns. Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation and immune responses, but their involvement in HBV transmission during pregnancy remains unclear. This study aimed to assess the impact of tenofovir disoproxil fumarate (TDF)-based antiviral therapy on lncRNA expression profiles and immune signaling pathways in umbilical cord blood and placental tissues and to identify potential therapeutic targets for preventing intrauterine HBV infection. Materials and Methods Umbilical cord serum and placental tissues were collected from six HBV carriers. Three carriers received TDF-based antiviral therapy, and the remaining carriers who did not receive antiviral therapy served as controls. LncRNA microarray analysis and bioinformatics were used to evaluate the effects of antiviral therapy on lncRNA expression profiles and signaling pathways. Results Antiviral therapy exerted minimal effects on lncRNA expression profiles in umbilical cord blood. In placental tissues, significant alterations in lncRNA expression profiles were observed, including 249 upregulated and 381 downregulated lncRNAs. Antiviral therapy activated innate immune pathways, such as intracellular DNA sensing, chemokine signaling, type I interferon, Jak-Stat, and interferon-γ-mediated adaptive immunity. Through intersection analysis, CPED1 was found differentially expressed in both cord blood and placental tissues. KEGG pathway analysis suggested that low CPED1 expression may inhibit virus transmission via the JAK-STAT pathway. Conclusion This study demonstrated that TDF-based antiviral therapy altered lncRNA expression and activated immune signaling pathways in placental tissues, offering insights into the molecular mechanisms of maternal-fetal HBV transmission.
Collapse
Affiliation(s)
- Cuimin Wang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Department of Obstetrics & Gynecology, Guangxi Zhuang Autonomous Region People’s Hospital, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yuting Huang
- Department of Obstetrics & Gynecology, Youjiang Medical College for Nationalities, Baise City, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Lanfeng Li
- Department of Obstetrics & Gynecology, Guangxi Zhuang Autonomous Region People’s Hospital, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xizhen Huang
- Department of Obstetrics & Gynecology, Guangxi Zhuang Autonomous Region People’s Hospital, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yin Huang
- Department of Obstetrics & Gynecology, Guangxi Zhuang Autonomous Region People’s Hospital, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiang Fang
- Department of Obstetrics & Gynecology, Guangxi Zhuang Autonomous Region People’s Hospital, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yu Long
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Medical Simulator Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
2
|
Gallo A, Sammartino JC, Vazzana R, Giambruno R, Carcione C, Cuscino N, Castelbuono S, Miceli V, Bulati M, Lilleri D, Cassaniti I, Conaldi PG, Baldanti F. Transcriptomic profiles of monocyte-derived macrophages exposed to SARS-CoV-2 VOCs reveal immune-evasion escape driven by delta. J Transl Med 2025; 23:151. [PMID: 39905461 PMCID: PMC11796281 DOI: 10.1186/s12967-025-06158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Since the breakout of COVID-19, the mutated forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown enhanced rates of transmission and adaptation to humans. The variants of concern (VOC), designated Alpha, Beta, Gamma, Delta, and Omicron emerged independent of one another, and in turn rapidly became dominant. The success of each VOC, as well as the virus fitness, were enabled by altered intrinsic functional properties and, reasonably, to virus antigenicity changes, conferring the ability to evade a primed immune response. METHODS We analysed the gene expression profiles of monocyte-derived macrophages (MDM) isolated from whole blood of healthy participants exposed to the 5 different SARS-CoV-2 VOC: D614G, Alpha (B.1.1.7), Gamma (P1), Delta (B.1.617.2), and Omicron BA.1 (B.1.1.529), and to the HCoV-OC43 strain, a coronavirus already present in the population before the SARS-CoV-2 pandemic. Whole transcriptome RNA-Seq, for both coding and non-coding RNAs, was then made. RESULTS After exposure to the 5 VOC of MDM, we initially assessed the presence of the viral SARS-CoV-2 transcripts to confirm viral entry. We then analysed the RNA-Seq data and observed a significant deregulation of both coding and non-coding RNAs. In particular, our RNA-Seq analysis showed a significant up-regulation of several genes involved in different immunological processes, such as PARP9/PARP14 axes, in macrophages exposed to D614G, Alpha, and Gamma variants. Surprisingly, our data showed that macrophages exposed to the Delta variant exhibited a transcriptional profile more similar to the naïve control group, while macrophages exposed to the Omicron variant showed intermediate differentially expressed genes (DEGs) between the two groups. By checking the canonical markers for M1/M2 differentiation states, we did not observe any expression in macrophages exposed to the Delta variant, suggesting an M0 status, comparable to the naïve control group. Finally, we observed a significant deregulation of 3 main types of non-coding RNAs (ncRNAs): long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small nucleolar RNAs (snoRNAs), some of which are common to coronaviruses, and some specific to SARS-CoV-2. CONCLUSION The SARS-CoV-2-dependent alteration of the transcriptome of monocyte-derived macrophage (MDM)-infected cells can be linked to the chronological order of the variants' appearance in the human population. Our data suggest an evolution of VOC in modulating the host immune response, with a strong change in pace beginning with the advent of the Delta variant. MDMs exposed to Delta showed a failure in the activation of the adaptive immune response, and this correlates with the more severe symptoms developed by people affected with this SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Alessia Gallo
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy.
| | - Josè Camilla Sammartino
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Roberta Vazzana
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Roberto Giambruno
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Nicola Cuscino
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Salvatore Castelbuono
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Vitale Miceli
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Matteo Bulati
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Daniele Lilleri
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Irene Cassaniti
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Università degli Studi di Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Fausto Baldanti
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Università degli Studi di Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
3
|
Kebriaei A, Besharati R, Namdar Ahmad Abad H, Havakhah S, Khosrojerdi M, Azimian A. The relationship between microRNAs and COVID-19 complications. Noncoding RNA Res 2025; 10:16-24. [PMID: 39296641 PMCID: PMC11406673 DOI: 10.1016/j.ncrna.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Over the past three years, since the onset of COVID-19, several scientific studies have concentrated on understanding susceptibility to the virus, the progression of the illness, and possible long-term complexity. COVID-19 is broadly recognized with effects on multiple systems in the body, and various factors related to society, medicine, and genetics/epigenetics may contribute to the intensity and results of the disease. Additionally, a SARS-CoV-2 infection can activate pathological activities and expedite the emergence of existing health issues into clinical problems. Forming easily accessible, distinctive, and permeable biomarkers is essential for categorizing patients, preventing the disease, predicting its course, and tailoring treatments for COVID-19 individually. One promising candidate for such biomarkers is microRNAs, which could serve various purposes in understanding diverse forms of COVID-19, including susceptibility, intensity, disease progression, outcomes, and potential therapeutic options. This review provides an overview of the most significant findings related to the involvement of microRNAs in COVID-19 pathogenesis. Furthermore, it explores the function of microRNAs in a broad span of effects that may arise from accompanying or underlying health status. It underscores the value of comprehending how diverse conditions, such as neurological disorders, diabetes, cardiovascular diseases, and obesity, interact with COVID-19.
Collapse
Affiliation(s)
- Abdollah Kebriaei
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Besharati
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hasan Namdar Ahmad Abad
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shahrzad Havakhah
- Department of Physiology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahsa Khosrojerdi
- Department of Immunology and Allergy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
4
|
Eldien HMS, Almaeen AH, El Fath AA, Taha AE, Ahmed R, Elfadil H, Hetta HF. Unlocking the Potential of RNA Sequencing in COVID-19: Toward Accurate Diagnosis and Personalized Medicine. Diagnostics (Basel) 2025; 15:229. [PMID: 39857114 PMCID: PMC11763845 DOI: 10.3390/diagnostics15020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
COVID-19 has caused widespread morbidity and mortality, with its effects extending to multiple organ systems. Despite known risk factors for severe disease, including advanced age and underlying comorbidities, patient outcomes can vary significantly. This variability complicates efforts to predict disease progression and tailor treatment strategies. While diagnostic and therapeutic approaches are still under debate, RNA sequencing (RNAseq) has emerged as a promising tool to provide deeper insights into the pathophysiology of COVID-19 and guide personalized treatment. A comprehensive literature review was conducted using PubMed, Scopus, Web of Science, and Google Scholar. We employed Medical Subject Headings (MeSH) terms and relevant keywords to identify studies that explored the role of RNAseq in COVID-19 diagnostics, prognostics, and therapeutics. RNAseq has proven instrumental in identifying molecular biomarkers associated with disease severity in patients with COVID-19. It allows for the differentiation between asymptomatic and symptomatic individuals and sheds light on the immune response mechanisms that contribute to disease progression. In critically ill patients, RNAseq has been crucial for identifying key genes that may predict patient outcomes, guiding therapeutic decisions, and assessing the long-term effects of the virus. Additionally, RNAseq has helped in understanding the persistence of viral RNA after recovery, offering new insights into the management of post-acute sequelae, including long COVID. RNA sequencing significantly improves COVID-19 management, particularly for critically ill patients, by enhancing diagnostic accuracy, personalizing treatment, and predicting therapeutic responses. It refines patient stratification, improving outcomes, and holds promise for targeted interventions in both acute and long COVID.
Collapse
Affiliation(s)
- Heba M. Saad Eldien
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abdulrahman H. Almaeen
- Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ahmed Abo El Fath
- Tropical Medicine and Gastroenterology Department, Assiut University Hospital, Assiut 71515, Egypt;
| | - Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| |
Collapse
|
5
|
Hu H, Luo H, Deng Z. PCAT19: the role in cancer pathogenesis and beyond. Front Cell Dev Biol 2024; 12:1435717. [PMID: 39744012 PMCID: PMC11688190 DOI: 10.3389/fcell.2024.1435717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 01/04/2025] Open
Abstract
PCAT19, a long non-coding RNA, has attracted considerable attention due to its diverse roles in various malignancies. This work compiles current research on PCAT19's involvement in cancer pathogenesis and progression. Abnormal expression of PCAT19 has been observed in various cancers, and its correlation with clinical features and prognosis positions it as a promising prognostic biomarker. Additionally, its ability to effectively differentiate between tumor and normal tissues suggests significant diagnostic value. PCAT19 exhibits a dual nature, functioning either as an oncogene or a tumor suppressor, depending on the cancer type. It is implicated in a range of tumor-related activities, including cell proliferation, apoptosis, invasion, migration, metabolism, as well as tumor growth and metastasis. PCAT19 acts as a competing endogenous RNA (ceRNA) or interacts with proteins to regulate critical cancer-related pathways, such as MELK signaling, p53 signaling, and cell cycle pathways. Furthermore, emerging evidence suggests that PCAT19 plays a role in the modulation of neuropathic pain, adding complexity to its functional repertoire. By exploring the molecular mechanisms and pathways associated with PCAT19, we aim to provide a comprehensive understanding of its multifaceted roles in human health and disease, highlighting its potential as a therapeutic target for cancer and pain management.
Collapse
Affiliation(s)
- Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziqing Deng
- Department of General Surgery, Nanchang Third Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Kondratov KA, Artamonov AA, Nikitin YV, Velmiskina AA, Mikhailovskii VY, Mosenko SV, Polkovnikova IA, Asinovskaya AY, Apalko SV, Sushentseva NN, Ivanov AM, Scherbak SG. Revealing differential expression patterns of piRNA in FACS blood cells of SARS-CoV-2 infected patients. BMC Med Genomics 2024; 17:212. [PMID: 39143590 PMCID: PMC11325581 DOI: 10.1186/s12920-024-01982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Non-coding RNA expression has shown to have cell type-specificity. The regulatory characteristics of these molecules are impacted by changes in their expression levels. We performed next-generation sequencing and examined small RNA-seq data obtained from 6 different types of blood cells separated by fluorescence-activated cell sorting of severe COVID-19 patients and healthy control donors. In addition to examining the behavior of piRNA in the blood cells of severe SARS-CoV-2 infected patients, our aim was to present a distinct piRNA differential expression portrait for each separate cell type. We observed that depending on the type of cell, different sorted control cells (erythrocytes, monocytes, lymphocytes, eosinophils, basophils, and neutrophils) have altering piRNA expression patterns. After analyzing the expression of piRNAs in each set of sorted cells from patients with severe COVID-19, we observed 3 significantly elevated piRNAs - piR-33,123, piR-34,765, piR-43,768 and 9 downregulated piRNAs in erythrocytes. In lymphocytes, all 19 piRNAs were upregulated. Monocytes were presented with a larger amount of statistically significant piRNA, 5 upregulated (piR-49039 piR-31623, piR-37213, piR-44721, piR-44720) and 35 downregulated. It has been previously shown that piR-31,623 has been associated with respiratory syncytial virus infection, and taking in account the major role of piRNA in transposon silencing, we presume that the differential expression patterns which we observed could be a signal of indirect antiviral activity or a specific antiviral cell state. Additionally, in lymphocytes, all 19 piRNAs were upregulated.
Collapse
Affiliation(s)
- Kirill A Kondratov
- City Hospital, No. 40 St, Petersburg, 197706, Russia.
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia.
- Saint-Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Yuri V Nikitin
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia
| | - Anastasiya A Velmiskina
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Sergey V Mosenko
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Irina A Polkovnikova
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Anna Yu Asinovskaya
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Svetlana V Apalko
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Andrey M Ivanov
- S. M. Kirov Military Medical Academy, St. Petersburg, 194044, Russia
| | - Sergey G Scherbak
- City Hospital, No. 40 St, Petersburg, 197706, Russia
- Saint-Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
7
|
de Souza Nicoletti A, Berlofa Visacri M, Regina da Silva Correa da Ronda C, Tiemi Siguemoto J, Motta Neri C, Nogueira de Souza R, de Souza Ventura D, Eguti A, Ferreira de Souza Silva L, Wesley Perroud Junior M, Buosi K, Jalalizadeh M, Dionato F, Dal Col L, Giacomelli C, Leme P, Oliveira Reis L, Augusto Dos Santos L, Durán N, José Fávaro W, Luiz da Costa J, Dagli-Hernandez C, Moriel P, de Carvalho Pincinato E. Increased expression of miR-320b in blood plasma of patients in response to SARS-CoV-2 infection. Sci Rep 2024; 14:13702. [PMID: 38871789 PMCID: PMC11176351 DOI: 10.1038/s41598-024-64325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Recent research has demonstrated how epigenetic mechanisms regulate the host-virus interactions in COVID-19. It has also shown that microRNAs (miRNAs) are one of the three fundamental mechanisms of the epigenetic regulation of gene expression and play an important role in viral infections. A pilot study published by our research group identified, through next-generation sequencing (NGS), that miR-4433b-5p, miR-320b, and miR-16-2-3p are differentially expressed between patients with COVID-19 and controls. Thus, the objectives of this study were to validate the expression of these miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR) and to perform in silico analyses. Patients with COVID-19 (n = 90) and healthy volunteers (n = 40) were recruited. MiRNAs were extracted from plasma samples and validated using qRT-PCR. In addition, in silico analyses were performed using mirPath v.3 software. MiR-320b was the only miRNA upregulated in the case group com-pared to the control group. The in silico analyses indicated the role of miR-320b in the regulation of the KITLG gene and consequently in the inflammatory process. This study confirmed that miR-320b can distinguish patients with COVID-19 from control participants; however, further research is needed to determine whether this miRNA can be used as a target or a biomarker.
Collapse
Affiliation(s)
| | | | | | - Julia Tiemi Siguemoto
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carolini Motta Neri
- Faculty of Pharmaceutical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Adriana Eguti
- Hospital Estadual de Sumaré Dr. Leandro Francheschini, Sumaré, SP, Brazil
| | | | - Mauricio Wesley Perroud Junior
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Hospital Estadual de Sumaré Dr. Leandro Francheschini, Sumaré, SP, Brazil
| | - Keini Buosi
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mehrsa Jalalizadeh
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Franciele Dionato
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luciana Dal Col
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Cristiane Giacomelli
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia Leme
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leonardo Oliveira Reis
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- School of Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, SP, Brazil
| | | | - Nelson Durán
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Wagner José Fávaro
- School of Medical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - José Luiz da Costa
- Faculty of Pharmaceutical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carolina Dagli-Hernandez
- Faculty of Pharmaceutical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patricia Moriel
- Faculty of Pharmaceutical Science, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | | |
Collapse
|
8
|
Bermudez-Santana CI, Gallego-Gómez JC. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses 2024; 16:804. [PMID: 38793685 PMCID: PMC11125801 DOI: 10.3390/v16050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, the function of noncoding RNAs (ncRNAs) as regulatory molecules of cell physiology has begun to be better understood. Advances in viral molecular biology have shown that host ncRNAs, cellular factors, and virus-derived ncRNAs and their interplay are strongly disturbed during viral infections. Nevertheless, the folding of RNA virus genomes has also been identified as a critical factor in regulating canonical and non-canonical functions. Due to the influence of host ncRNAs and the structure of RNA viral genomes, complex molecular and cellular processes in infections are modulated. We propose three main categories to organize the current information about RNA-RNA interactions in some well-known human viruses. The first category shows examples of host ncRNAs associated with the immune response triggered in viral infections. Even though miRNAs introduce a standpoint, they are briefly presented to keep researchers moving forward in uncovering other RNAs. The second category outlines interactions between virus-host ncRNAs, while the third describes how the structure of the RNA viral genome serves as a scaffold for processing virus-derived RNAs. Our grouping may provide a comprehensive framework to classify ncRNA-host-cell interactions for emerging viruses and diseases. In this sense, we introduced them to organize DENV-host-cell interactions.
Collapse
Affiliation(s)
- Clara Isabel Bermudez-Santana
- Computational and theoretical RNomics Group, Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Gallego-Gómez
- Grupo de Medicina de Traslación, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
9
|
Li F, Yu H, Qi A, Zhang T, Huo Y, Tu Q, Qi C, Wu H, Wang X, Zhou J, Hu L, Ouyang H, Pang D, Xie Z. Regulatory Non-Coding RNAs during Porcine Viral Infections: Potential Targets for Antiviral Therapy. Viruses 2024; 16:118. [PMID: 38257818 PMCID: PMC10818342 DOI: 10.3390/v16010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Pigs play important roles in agriculture and bio-medicine; however, porcine viral infections have caused huge losses to the pig industry and severely affected the animal welfare and social public safety. During viral infections, many non-coding RNAs are induced or repressed by viruses and regulate viral infection. Many viruses have, therefore, developed a number of mechanisms that use ncRNAs to evade the host immune system. Understanding how ncRNAs regulate host immunity during porcine viral infections is critical for the development of antiviral therapies. In this review, we provide a summary of the classification, production and function of ncRNAs involved in regulating porcine viral infections. Additionally, we outline pathways and modes of action by which ncRNAs regulate viral infections and highlight the therapeutic potential of artificial microRNA. Our hope is that this information will aid in the development of antiviral therapies based on ncRNAs for the pig industry.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Hao Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Yuran Huo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Qiuse Tu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Lanxin Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
10
|
Chen Y, Wang Z, Wu C, Li H, Qian H, Wang M, Wu P, Guo X, Zhang Z. Identification of long noncoding RNAs of silkworm at the early stage of Bombyx mori bidensovirus infection. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22082. [PMID: 38288492 DOI: 10.1002/arch.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Bombyx mori bidensovirus (BmBDV) is one of the most important pathogens of silkworm. It mainly infects midgut cells of silkworm and causes losses to the sericulture industry. Long noncoding RNAs (lncRNAs) have been reported to play an important role in the regulation of antiviral immune response in silkworm. To explore whether lncRNAs are involved in BmBDV infection and immune response of silkworm, we performed a comparative transcriptome analysis to identify the lncRNAs and mRNAs between the BmBDV infected and noninfected silkworm larvae at the early stage. A total of 16,069 genes and 974 candidate lncRNAs were identified, among which 142 messenger RNA (mRNAs) and four lncRNAs were differentially expressed (DE). Target gene prediction revealed that 142 DEmRNAs were coexpressed with four DElncRNAs, suggesting that the expression of mRNA is mainly affected through trans-regulation activities. A regulatory network of DElncRNAs and DEmRNAs was constructed, showing that many genes targeted by different DElncRNAs are involved in metabolism and immunity, which implies that these genes and lncRNAs play an important role in the replication of BmBDV. Our results will help us to improve our understanding of lncRNA-mediated regulatory roles in BmBDV infection, providing a new perspective for further exploring the interaction between host and BmBDV.
Collapse
Affiliation(s)
- Yeping Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Zihe Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Chengyue Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Hao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Mengdong Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xijie Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Zhendong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
11
|
Constantinescu-Bercu A, Lobiuc A, Căliman-Sturdza OA, Oiţă RC, Iavorschi M, Pavăl NE, Șoldănescu I, Dimian M, Covasa M. Long COVID: Molecular Mechanisms and Detection Techniques. Int J Mol Sci 2023; 25:408. [PMID: 38203577 PMCID: PMC10778767 DOI: 10.3390/ijms25010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), has emerged as a significant health concern following the COVID-19 pandemic. Molecular mechanisms underlying the occurrence and progression of long COVID include viral persistence, immune dysregulation, endothelial dysfunction, and neurological involvement, and highlight the need for further research to develop targeted therapies for this condition. While a clearer picture of the clinical symptomatology is shaping, many molecular mechanisms are yet to be unraveled, given their complexity and high level of interaction with other metabolic pathways. This review summarizes some of the most important symptoms and associated molecular mechanisms that occur in long COVID, as well as the most relevant molecular techniques that can be used in understanding the viral pathogen, its affinity towards the host, and the possible outcomes of host-pathogen interaction.
Collapse
Affiliation(s)
- Adela Constantinescu-Bercu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Andrei Lobiuc
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Olga Adriana Căliman-Sturdza
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
- Suceava Emergency Clinical County Hospital, 720224 Suceava, Romania
| | - Radu Cristian Oiţă
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
| | - Monica Iavorschi
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Naomi-Eunicia Pavăl
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Iuliana Șoldănescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
- Department of Computers, Electronics and Automation, Ştefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91711, USA
| |
Collapse
|
12
|
González-Ramírez J, Leija-Montoya AG, Serafín-Higuera N, Guzmán-Martín CA, Amezcua-Guerra LM, Olvera-Sandoval C, Machado-Contreras JR, Ruiz-Hernández A, Hernández-Díazcouder A, Estrada-Guzmán JD, Sánchez-Muñoz F. Increased Expression of lncRNA AC000120.7 and SENP3-EIF4A1 in Patients with Acute Respiratory Distress Syndrome Induced by SARS-CoV-2 Infection: A Pilot Study. Microorganisms 2023; 11:2342. [PMID: 37764186 PMCID: PMC10537196 DOI: 10.3390/microorganisms11092342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19, a disease caused by the SARS-CoV-2 virus, poses significant threats to the respiratory system and other vital organs. Long non-coding RNAs have emerged as influential epigenetic regulators and promising biomarkers in respiratory ailments. The objective of this study was to identify candidate lncRNAs in SARS-CoV-2-positive individuals compared to SARS-CoV-2-negative individuals and investigate their potential association with ARDS-CoV-2 (acute respiratory distress syndrome). Employing qRT-PCR, we meticulously examined the expression profiles of a panel comprising 84 inflammation-related lncRNAs in individuals presenting upper respiratory infection symptoms, categorizing them into those testing negative or positive for SARS-CoV-2. Notably, first-phase PSD individuals exhibited significantly elevated levels of AC000120.7 and SENP3-EIF4A1. In addition, we measured the expression of two lncRNAs, AC000120.7 and SENP3-EIF4A1, in patients with ARDS unrelated to SARS-CoV-2 (n = 5) and patients with ARDS induced by SARS-CoV-2 (ARDS-CoV-2, n = 10), and interestingly, expression was also higher among patients with ARDS. Intriguingly, our interaction pathway analysis unveiled potential interactions between lncRNA AC000120.7, various microRNAs, and genes associated with inflammation. This study found higher expression levels of lncRNAs AC000120.7 and SENP3-EIF4A1 in the context of infection-positive COVID-19, particularly within the complex landscape of ARDS.
Collapse
Affiliation(s)
- Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, Baja California, Mexico;
- Laboratorio de Biología Celular, Unidad de Ciencias de la Salud Campus Mexicali, Universidad Autónoma de Baja California, Calle de la Claridad S/N, Col. Plutarco Elías Calles, Mexicali 21376, Baja California, Mexico
| | - Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali 21000, Baja California, Mexico; (A.G.L.-M.); (C.O.-S.); (J.R.M.-C.); (A.R.-H.); (J.D.E.-G.)
| | - Nicolás Serafín-Higuera
- Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca S/N, Fracc. Calafia, Mexicali 21040, Baja California, Mexico;
| | - Carlos A. Guzmán-Martín
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (C.A.G.-M.); (L.M.A.-G.); (A.H.-D.)
| | - Luis M. Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (C.A.G.-M.); (L.M.A.-G.); (A.H.-D.)
| | - Carlos Olvera-Sandoval
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali 21000, Baja California, Mexico; (A.G.L.-M.); (C.O.-S.); (J.R.M.-C.); (A.R.-H.); (J.D.E.-G.)
| | - Jesús René Machado-Contreras
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali 21000, Baja California, Mexico; (A.G.L.-M.); (C.O.-S.); (J.R.M.-C.); (A.R.-H.); (J.D.E.-G.)
| | - Armando Ruiz-Hernández
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali 21000, Baja California, Mexico; (A.G.L.-M.); (C.O.-S.); (J.R.M.-C.); (A.R.-H.); (J.D.E.-G.)
| | - Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (C.A.G.-M.); (L.M.A.-G.); (A.H.-D.)
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Calle Doctor Márquez 162, Cuauhtémoc, Mexico City 06720, Mexico
| | - Julia Dolores Estrada-Guzmán
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali 21000, Baja California, Mexico; (A.G.L.-M.); (C.O.-S.); (J.R.M.-C.); (A.R.-H.); (J.D.E.-G.)
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (C.A.G.-M.); (L.M.A.-G.); (A.H.-D.)
| |
Collapse
|