1
|
Lee CJ, Nam Y, Rim YA, Ju JH. Advanced Animal Replacement Testing Strategies Using Stem Cell and Organoids. Int J Stem Cells 2025; 18:107-125. [PMID: 40064522 PMCID: PMC12122249 DOI: 10.15283/ijsc24118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 06/02/2025] Open
Abstract
The increasing ethical concerns and regulatory restrictions surrounding animal testing have accelerated the development of advanced in vitro models that more accurately replicate human physiology. Among these, stem cell-based systems and organoids have emerged as revolutionary tools, providing ethical, scalable, and physiologically relevant alternatives. This review explores the key trends and driving factors behind the adoption of these models, such as technological advancements, the principles of the 3Rs (Replacement, Reduction, and Refinement), and growing regulatory support from agencies like the OECD and FDA. It also delves into the development and application of various model systems, including 3D reconstructed tissues, induced pluripotent stem cell-derived cells, and microphysiological systems, highlighting their potential to replace animal models in toxicity evaluation, disease modeling, and drug development. A critical aspect of implementing these models is ensuring robust quality control protocols to enhance reproducibility and standardization, which is necessary for gaining regulatory acceptance. Additionally, we discuss advanced strategies for assessing toxicity and efficacy, focusing on organ-specific evaluation methods and applications in diverse fields such as pharmaceuticals, cosmetics, and food safety. Despite existing challenges related to scalability, standardization, and regulatory alignment, these innovative models represent a transformative step towards reducing animal use and improving the relevance and reliability of preclinical testing outcomes.
Collapse
Affiliation(s)
- Chang-Jin Lee
- Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic iPSC Research Center, CiSTEM Laboratory, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Yipscell Inc, Seoul, Korea
| | - Yoojun Nam
- Yipscell Inc, Seoul, Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Korea
| | - Yeri Alice Rim
- Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic iPSC Research Center, CiSTEM Laboratory, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, CiSTEM Laboratory, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Yipscell Inc, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Ren J, Huang S. Intestinal organoids in inflammatory bowel disease: advances, applications, and future directions. Front Cell Dev Biol 2025; 13:1517121. [PMID: 40421006 PMCID: PMC12104276 DOI: 10.3389/fcell.2025.1517121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Inflammatory bowel disease (IBD), characterized by chronic gastrointestinal inflammation, is a significant global health challenge. Traditional models often fail to accurately reflect human pathophysiology, leading to suboptimal treatments. This review provides an overview of recent advancements in intestinal organoid technology and its role in IBD research. Organoids, derived from patient-specific or pluripotent stem cells, retain the genetic, epigenetic, and structural characteristics of the native gut, allowing for precise modeling of key aspects of IBD. Innovations in CRISPR editing, organoid-microbe co-cultures, and organ-on-a-chip systems have enhanced the physiological relevance of these models, facilitating drug discovery and personalized therapy screening. However, challenges such as vascularization deficits and the need for standardized protocols remain. This review underscores the need for interdisciplinary efforts to bridge the gap between models and the complex reality of IBD. Future directions include the development of scalable vascularized models and robust regulatory frameworks to accelerate therapeutic translation. Organoids hold promise for unraveling IBD heterogeneity and transforming disease management.
Collapse
Affiliation(s)
| | - Silin Huang
- Department of Gastroenterology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Abdollahi S, Zarin B, Vatani M, Vajhadin F, Hassani M, Jalali P, Kim K, Sanati-Nezhad A. Biomimetic culture substrates for modelling homeostatic intestinal epithelium in vitro. Nat Commun 2025; 16:4120. [PMID: 40316543 PMCID: PMC12048609 DOI: 10.1038/s41467-025-59459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
The increasing interest in utilizing three-dimensional (3D) in vitro models with innovative biomaterials to engineer functional tissues arises from the limitations of conventional cell culture methods in accurately reproducing the complex physiological conditions of living organisms. This study presents a strategy for replicating the intricate microenvironment of the intestine by cultivating intestinal cells within bioinspired 3D interfaces that recapitulate the villus-crypt architecture and 3D tissue arrangement of the intestine. Intestinal cells cultured on these biomimetic substrates exhibited phenotypes and differentiation characteristics resembling intestinal-specific cell types, effectively replicating intestinal tissue. Notably, tissue proliferation and differentiation were achieved within 72-120 h-significantly faster than the several weeks required by conventional bioengineered materials, which often pose risks of tissue necrosis or cross-contamination. Additionally, the differentiated cells on these villi-crypts mimicking bio-interfaces exhibit higher production of natural antimicrobial peptides, resulting in reduced pathogenic infection compared to control samples. Furthermore, our method stands out for simplicity in fabrication, eliminating the need for cleanroom procedures and complex microfabrication techniques.
Collapse
Affiliation(s)
- Sorosh Abdollahi
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, T2N 2T8, Canada
| | - Bahareh Zarin
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Maryam Vatani
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, T2N 2T8, Canada
| | - Fereshteh Vajhadin
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Mohsen Hassani
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Pezhman Jalali
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Keekyoung Kim
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Amir Sanati-Nezhad
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, T2N 2T8, Canada.
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 2T8, Canada.
| |
Collapse
|
4
|
Taglieri M, Di Gregorio L, Matis S, Uras CRM, Ardy M, Casati S, Marchese M, Poggi A, Raffaghello L, Benelli R. Colorectal Organoids: Models, Imaging, Omics, Therapy, Immunology, and Ethics. Cells 2025; 14:457. [PMID: 40136707 PMCID: PMC11941511 DOI: 10.3390/cells14060457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Colorectal epithelium was the first long-term 3D organoid culture established in vitro. Identification of the key components essential for the long-term survival of the stem cell niche allowed an indefinite propagation of these cultures and the modulation of their differentiation into various lineages of mature intestinal epithelial cells. While these methods were eventually adapted to establish organoids from different organs, colorectal organoids remain a pioneering model for the development of new applications in health and disease. Several basic and applicative aspects of organoid culture, modeling, monitoring and testing are analyzed in this review. We also tackle the ethical problems of biobanking and distribution of these precious research tools, frequently confined in the laboratory of origin or condemned to destruction at the end of the project.
Collapse
Affiliation(s)
- Martina Taglieri
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Linda Di Gregorio
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Serena Matis
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Chiara Rosa Maria Uras
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Massimo Ardy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Sara Casati
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” CNR, 80131 Naples, Italy;
- Common Service ELSI, BBMRI.it (UNIMIB National Node Headquarter), 20126 Milan, Italy
| | - Monica Marchese
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Alessandro Poggi
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Lizzia Raffaghello
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Roberto Benelli
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| |
Collapse
|