1
|
Fu H, Yaniv V, Betzalel Y, Mamane H, Gray KA. Creating anti-viral high-touch surfaces using photocatalytic transparent films. CHEMOSPHERE 2023; 323:138280. [PMID: 36868422 DOI: 10.1016/j.chemosphere.2023.138280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial and self-cleaning surface coatings are promising tools to combat the growing global threat of infectious diseases and related healthcare-associated infections (HAIs). Although many engineered TiO2-based coating technologies are reporting antibacterial performance, the antiviral performance of these coatings has not been explored. Furthermore, previous studies have underscored the importance of the "transparency" of the coating for surfaces such as the touch screens of medical devices. Hence, in this study, we fabricated a variety of nanoscale TiO2-based transparent thin films (anatase TiO2, anatase/rutile mixed phase TiO2, silver-anatase TiO2 composite, and carbon nanotube-anatase TiO2 composite) via dipping and airbrush spray coating technologies and evaluated their antiviral performance (Bacteriophage MS2 as the model) under dark and illuminated conditions. The thin films showed high surface coverage (ranging from 40 to 85%), low surface roughness (maximum average roughness 70 nm), super-hydrophilicity (water contact angle 6-38.4°), and high transparency (70-80% transmittance under visible light). Antiviral performance of the coatings revealed that silver-anatase TiO2 composite (nAg/nTiO2) coated samples achieved the highest antiviral efficacy (5-6 log reduction) while the other TiO2 coated samples showed fair antiviral results (1.5-3.5 log reduction) after 90 min LED irradiation at 365 nm. Those findings indicate that TiO2-based composite coatings are effective in creating antiviral high-touch surfaces with the potential to control infectious diseases and HAIs.
Collapse
Affiliation(s)
- Han Fu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Vered Yaniv
- Water Technologies Laboratory, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yifaat Betzalel
- Water Technologies Laboratory, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv, 69978, Israel.
| | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
2
|
Kwiatkowska A, Granicka LH. Anti-Viral Surfaces in the Fight against the Spread of Coronaviruses. MEMBRANES 2023; 13:464. [PMID: 37233525 PMCID: PMC10223398 DOI: 10.3390/membranes13050464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
This review is conducted against the background of nanotechnology, which provides us with a chance to effectively combat the spread of coronaviruses, and which primarily concerns polyelectrolytes and their usability for obtaining protective function against viruses and as carriers for anti-viral agents, vaccine adjuvants, and, in particular, direct anti-viral activity. This review covers nanomembranes in the form of nano-coatings or nanoparticles built of natural or synthetic polyelectrolytes--either alone or else as nanocomposites for creating an interface with viruses. There are not a wide variety of polyelectrolytes with direct activity against SARS-CoV-2, but materials that are effective in virucidal evaluations against HIV, SARS-CoV, and MERS-CoV are taken into account as potentially active against SARS-CoV-2. Developing new approaches to materials as interfaces with viruses will continue to be relevant in the future.
Collapse
Affiliation(s)
| | - Ludomira H. Granicka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland;
| |
Collapse
|
3
|
Thomberg T, Bulgarin H, Lust A, Nerut J, Koppel M, Romann T, Palm R, Månsson M, Flores March NM, Junninen H, Külaviir M, Paiste P, Kirsimäe K, Punapart M, Viru L, Merits A, Lust E. The anti SARS-CoV-2 activity of nanofibrous filter materials activated with metal clusters. ATMOSPHERIC ENVIRONMENT: X 2023; 17:100212. [PMID: 36915669 PMCID: PMC9984305 DOI: 10.1016/j.aeaoa.2023.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Nanofibrous filter materials were prepared by electrospinning a solution of 28 wt% poly(vinylidene fluoride) in N,N-dimethylacetamide with and without the addition of 2 wt% AgNO3, Cu(NO3)2·2.5H2O or ZnCl2. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, inductively coupled plasma mass spectroscopy, thermogravimetric analysis, contact angle measurement, nitrogen sorption, and mercury intrusion porosimetry methods were used for the characterization of physical structure as well as the chemical composition of the electrospun materials. Particle filtration efficiency and antiviral activity against the SARS-CoV-2 alpha variant were tested in order to estimate the suitability of the prepared electrospun filter materials for application as indoor air filtration systems with virucidal properties. All filter materials prepared with salts demonstrated very high particle filtration efficiency (≥98.0%). The best antiviral activity was demonstrated by a material containing Cu(NO3)2·2.5H2O in the spinning solution, which displayed the decrease in the number of infectious virions by three orders of magnitude after a contact time of 12 h. Materials with the addition of AgNO3 and ZnCl2 decreased the number of infectious virions after the same contact time by only ∼8 and ∼11 times, respectively.
Collapse
Affiliation(s)
- T Thomberg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - H Bulgarin
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - A Lust
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - J Nerut
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - M Koppel
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - T Romann
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - R Palm
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - M Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - N M Flores March
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411, Tartu, Estonia
| | - H Junninen
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411, Tartu, Estonia
| | - M Külaviir
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - P Paiste
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - K Kirsimäe
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - M Punapart
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - L Viru
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - A Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - E Lust
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
4
|
Thomberg T, Ramah P, Lust A, Nerut J, Koppel M, Romann T, Palm R, Månsson M, March NF, Junninen H, Külaviir M, Paiste P, Kirsimäe K, Punapart M, Viru L, Merits A, Lust E. Preparation of nanofibrous materials activated with metal clusters for active and long-lasting air filters. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Khan GR, Malik SI. Ag-enriched TiO 2 nanocoating apposite for self-sanitizing/ self-sterilizing/ self-disinfecting of glass surfaces. MATERIALS CHEMISTRY AND PHYSICS 2022; 282:125803. [PMID: 35153357 PMCID: PMC8818044 DOI: 10.1016/j.matchemphys.2022.125803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The excellent strategy to mitigate the spread of the COVID-19 pandemic is to inhibit the transmission of the SARS-CoV-2. Since fomites are one of the vital routes of coronaviral transmission, disinfecting of fomites play a pivotal role in curbing its survival on the contaminated surfaces. Available commercial disinfectants cannot keep the contaminated surfaces sanitized all the time. Self-disinfecting ability of Ag-enriched TiO2 nanocoating due to its superb photocatalytic efficiency can effectively reduce infections caused by spread of pathogens at public places. Anatase Ag-TiO2 nanocoatings synthesized by sol-gel process at 0.5, 1.5, and 2.5% enriching concentrations were casted on glass substrates by spin-coating technique and subsequently annealed at 650 °C. The morphological shape, crystallographic structure, light absorbance, photo-luminosity, vibrational modes, and functional groups of Ag-TiO2 nanocoating on glass surface were studied by FE-SEM, GIXRD, UV-Visible, Photoluminescence, Raman, and FTIR spectroscopy. The developed anatase Ag-TiO2 nanocoatings manifested to improve photocatalytic disinfecting performance due to the achieved small crystallite size of 10.5-19.2 nm, diminished band gap energy of 2.56-2.60 eV, elevated surface area of 0.802-1.470 ×105 cm2/g, and enhanced light absorbance. Among the enriched specimens, 0.5% Ag-TiO2 nanocoatings predicted an overall exalted functionality compared to pristine one.
Collapse
Affiliation(s)
- G R Khan
- Nanotechnology Research Lab, Department of Physics, National Institute of Technology Srinagar, Hazratbal, 190006, Kashmir, India
| | - S I Malik
- Nanotechnology Research Lab, Department of Physics, National Institute of Technology Srinagar, Hazratbal, 190006, Kashmir, India
| |
Collapse
|