1
|
Bryson E, Anastasi A, Bricknell L, Kift R. Household dog fecal composting: Current issues and future directions. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1876-1891. [PMID: 38924209 DOI: 10.1002/ieam.4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/05/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Dog feces are a known source of nutrient, pathogen, and plastic pollution that can harm human and ecosystem health. Home composting may be a more environmentally sustainable method of managing dog feces and reducing this pollution. While composting is an established method for recycling animal manures into low-risk soil conditioners for food production, few studies have investigated whether household-scale compost methods can safely and effectively process dog feces for use in backyard edible gardens. A broad range of literature on in situ composting of dog feces is evaluated and compared according to scale, parameters tested, and compost methods used. Studies are analyzed based on key identified knowledge gaps: appropriate compost technologies to produce quality soil conditioner on small scales, potential for fecal pathogen disinfection in mesophilic compost conditions, and biodegradation of compostable plastic dog waste bags in home compost systems. This review also discusses how existing methods and quality standards for commercial compost can be adapted to dog fecal home composting. Priorities for future research are investigation of household-scale aerobic compost methods and potential compost amendments needed to effectively decompose dog feces and compostable plastic dog waste bags to produce a good-quality, sanitized, beneficial soil conditioner for use in home gardens. Integr Environ Assess Manag 2024;20:1876-1891. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Emily Bryson
- School of Health, Medical and Applied Sciences, Central Queensland University, Wayville, South Australia, Australia
| | - Amie Anastasi
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| | - Lisa Bricknell
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| | - Ryan Kift
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| |
Collapse
|
2
|
González D, Barrena R, Moral-Vico J, Irigoyen I, Sánchez A. Addressing the gaseous and odour emissions gap in decentralised biowaste community composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:231-238. [PMID: 38412755 DOI: 10.1016/j.wasman.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Composting has demonstrated to be an effective and sustainable technology to valorise organic waste in the framework of circular economy, especially for biowaste. Composting can be performed in various technological options, from full-scale plants to community or even individual composters. However, there is scarce scientific information about the potential impact of community composting referred to gaseous emissions. This work examines the emissions of methane and nitrous oxide as main GHG, ammonia, VOC and odours from different active community composting sites placed in Spain, treating kitchen, leftovers and household biowaste. Expectedly, the gaseous emissions have an evident relation with the composting progress, represented mainly by its decrease as temperature or biological activity decreases. GHG and odour emission rates ranged from 5.3 to 815.2 mg CO2eq d-1 kg-1VS and from 69.8 to 1088.5 ou d-1 kg-1VS, respectively, generally being lower than those find in open-air full-scale composting. VOC characterization from the community composting gaseous emissions showed a higher VOC families' distribution in the emissions from initial composting phases, even though terpenes such as limonene, α-pinene and β-pinene were the most abundant VOC along the composting process occurring in the different sites studied. The results presented in this study can be the basis to evaluate systematically and scientifically the numerous current projects for a worldwide community composting implementation in decentralised biowaste management schemes.
Collapse
Affiliation(s)
- Daniel González
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Raquel Barrena
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Javier Moral-Vico
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Ignacio Irigoyen
- Department of Agronomy, Biotechnology and Food, Public University of Navarre, 31006 Pamplona-Iruña, Navarra, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
| |
Collapse
|
3
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
4
|
Hall SM, Tikku V, Heiger-Bernays WJ. Potential Policy and Community Implications of Equitable Organic Waste, Compost, and Urban Agricultural Systems in the United States. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:115001. [PMID: 37966215 PMCID: PMC10648754 DOI: 10.1289/ehp12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Urban organic waste diverted from landfills for use as compost feedstock may help mitigate and adapt to the effects of our changing climate. Yet, compost produced from urban food and yard waste is often a source of contaminants harmful to human and environmental health. Efforts by multiple municipalities are increasing residential and commercial food and yard waste collection; however, finished, tested compost is typically unavailable to those contributing the waste and whose gardens would benefit. OBJECTIVES This commentary evaluates the relative equity and safety of U.S. organic waste cycles in relation to urban and peri-urban agriculture (UA) and waste stewardship. We a) explore historical structures that have led to siloed food and waste systems and b) provide recommendations to promote safer compost production from urban organic waste inputs. The engagement of intersectional partners in the creation of equitable policies and contracts that integrate food and waste justice is crucial to this work. METHODS A 15-y relationship between community, academic, and government partners in Boston, Massachusetts, has increased access to health-promoting community gardens. Historical concerns raised by gardeners resulted in improvement to the quality of compost sourced from municipal organic waste and motivated a case study of Boston and three other cities (Seattle, Washington; San Francisco, California; New York, New York). This case study provides the approaches used to source, collect, process, test, and deliver urban organic waste as compost for UA. It informed recommendations to improve the safety and equity of organic waste-to-compost cycles. DISCUSSION Strict feedstock regulation and required compost safety testing are essential to produce safe, city-sourced compost. Balancing the needs of landfill diversion with equitable distribution to all contributors, particularly low-income and food-insecure people, will help concentrate UA benefits within marginalized communities. Adoption of a public health lens may help ensure the safety of nutrient-rich compost available for urban growers through legislation at state and local levels, along with explicit industry contracts. https://doi.org/10.1289/EHP12921.
Collapse
Affiliation(s)
- Samantha M. Hall
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Vidya Tikku
- The Trustees of Reservations, Boston, Massachusetts, USA
| | - Wendy J. Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Oviedo-Ocaña ER, Abendroth C, Domínguez IC, Sánchez A, Dornack C. Life cycle assessment of biowaste and green waste composting systems: A review of applications and implementation challenges. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:350-364. [PMID: 37708800 DOI: 10.1016/j.wasman.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Composting is one of the most widely applied methods for recycling organic waste. This process has been proposed as one option that facilitates the reincorporation of materials into the production cycle. However, composting also generates environmental impacts. Life Cycle Assessment (LCA) is the most common approach to evaluate the environmental impacts of a process at different system stages. Nevertheless, applying LCA in composting facilities is challenging due to the extensive information required, the lack of standardization on the initial assumptions, the definition of system boundaries, and the high diversity of existing composting technologies. This paper systematically reviews LCA studies in biowaste and/or green waste composting. The study highlights the challenges that should be met in order to improving the application of LCA to evaluate the environmental impacts of this type or waste treatment strategy. The review protocol used identified 456 papers published between 2010 and 2022. After the screening, 56 papers were selected, read, and thoroughly analyzed. The results show that: i) about 68% of the studies aimed to compare composting with other solid waste management options; ii) there was a wide diversity among the impact categories considered, which predominantly included climate change and ozone depletion; iii) there was no consensus on the functional unit or the system boundaries; iv) the main gaseous emissions studied were ammonia, methane, and nitrogen oxide, which were generally determined by emission factors; v) the avoided environmental impacts associated with the end-product quality and its application as an organic amendment or soil improver were ignored. This work demonstrates the complexity of conducting credible and valid composting LCA studies and proposes seven recommendations for improving the application of this assessment methodology to analyze this waste management alternative.
Collapse
Affiliation(s)
- E R Oviedo-Ocaña
- Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación en Recurso Hídrico y Saneamiento Ambiental - GPH, Carrera 27 Calle 9 Ciudad Universitaria Bucaramanga, Colombia
| | - C Abendroth
- Technische Universität Dresden, Institute of Waste Management and Circular Economy, Pratzschwitzer Str. 15. 01796 Pirna, Germany; Brandenburg Technical University Cottbus-Senftenberg, Faculty of Environment and Natural Sciences, Lehrgebäude 4 A R2.25, Siemens-Halske-Ring 8 03046 Cottbus, Germany
| | - I C Domínguez
- Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación en Recurso Hídrico y Saneamiento Ambiental - GPH, Carrera 27 Calle 9 Ciudad Universitaria Bucaramanga, Colombia
| | - A Sánchez
- Universitat Autònoma de Barcelona, Department of Chemical Engineering, Composting Research Group, 08193, Barcelona, Bellaterra, Spain.
| | - C Dornack
- Technische Universität Dresden, Institute of Waste Management and Circular Economy, Pratzschwitzer Str. 15. 01796 Pirna, Germany
| |
Collapse
|
6
|
Assessing Physiochemical Characteristics of Agricultural Waste and Ready Compost at Wadi Al-Far'a Watershed of Palestine. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2023; 2023:6147506. [PMID: 36755786 PMCID: PMC9902146 DOI: 10.1155/2023/6147506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/17/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023]
Abstract
The Wadi Al-Far'a Watershed (WFW) is one of the most important agricultural lands in Palestine where considerable amounts of organic wastes are generated. Yet, mismanagement of agricultural waste, including random disposal and/or burning, is a prevalent practice in the WFW. Such a practice might result in greenhouse gas emissions and leachate penetration into underlying soil and groundwater. To encourage compost production in the WFW as an efficient way for organic agricultural waste treatment and emission reduction, this study aims at evaluating the quality of both raw organic agricultural waste and ready compost, locally produced or imported. The evaluation considers the physiochemical characteristics as well as the heavy metal contents. The analysis of 17 samples of raw organic agricultural waste showed a good potential for compost production due to the high content of organic matter and other nutrients such as nitrogen and phosphorus. The analysis of 15 ready compost samples, however, showed that compost quality is relatively low due to the high electrical conductivity and low moisture content measurements as well as the high levels of sodium, chloride, and potassium. Furthermore, heavy metal contents of both raw organic agricultural waste and ready compost samples are less than the limits specified by the Palestinian and international standards. Therefore, local farmers can safely use raw organic agricultural waste generated in the WFW for compost production. Composting will not only enhance soil reclamation and crop production but also protect human health and the environment and promote sustainable economic development.
Collapse
|
7
|
Toward a Circular Bioeconomy within Food Waste Valorization: A Case Study of an On-Site Composting System of Restaurant Organic Waste. SUSTAINABILITY 2022. [DOI: 10.3390/su14148232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present and projected context of an increasing worldwide demand for food, the intensification of climate change effects on agriculture, and the depletion and degradation of natural resources, global actions must be taken to assure future food security for all people. Improper practices along the food supply chain, from primary production to consumption, generate huge quantities of food waste. Building a circular bioeconomy that feeds recycled materials back into the economy and minimizes the loss of resources will be an important step in introducing the world’s food system to a sustainable path. The present case study describes an enclosed on-site composting system for food waste, operated in real-life conditions. The composting equipment was installed for a restaurant with specific needs in November 2020, located near a shopping center in Bucharest, the capital city of Romania. The physical, chemical, and biological characteristics of the compost came from a mix of food waste from a retail restaurant and sawdust pellets used as absorbent material, and these were analyzed to monitor compost quality and establish valorization opportunities. Two different monitoring campaigns were developed and the biological parameters were analyzed. The second monitoring campaign indicated that the compost was contaminated with Escherichia coli and Salmonella spp. When handled correctly and according to instructions, the composting process eliminates pathogens that may be present in food waste, such as Escherichia coli, Salmonella spp., etc., resulting in a high-quality compost that can be valorized in agriculture such as fertilizer or soil improver. Our results demonstrated that even when maintaining the same composition of raw materials in the composter, the quality and properties of the compost are greatly influenced by its operating conditions. Quality management procedures must be enforced and procedures must be strictly followed for the compost to be considered compliant. Compost that does not meet the requirements according to the regulation in force is again subjected to composting. If, after repeating the operation, the compost is still noncompliant, it is declared nonrecyclable waste, and must follow the specific procedure for such waste.
Collapse
|