1
|
Li C, Ma W, Jin K. An Enabling Peptide Ligation Induced by Thiol-Salicylaldehyde Ester for Chemical Protein Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408538. [PMID: 39440515 PMCID: PMC11633502 DOI: 10.1002/advs.202408538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Chemical protein synthesis by amide-forming ligation of two unprotected peptide segments offers an effective strategy for the preparation of protein derivatives that are not accessible through bioengineering approaches. Herein, an unprecedented chemical ligation between peptides with C-terminal 2-mercaptobenzaldehyde (thiol-salicylaldehyde, TSAL) esters and peptides bearing N-terminal cysteine/penicillamine is reported. Reactive peptide TSAL esters can be obtained from peptide hydrazides in an operationally simple and highly effective manner. This chemoselective peptide ligation enables the rapid production of N,S-benzylidene acetal intermediates, which can readily be converted into native amide bonds even at sterically hindered junctions. In addition, the current method can be applied compatibly in concert with other types of ligations and subsequent desulfurization chemistry, thereby facilitating convergent protein synthesis. The effectiveness of this new method is also showcased by the total synthesis of proteins ubiquitin and hyalomin-3 (Hyal-3), the efficient synthesis of protein ubiquitin-fold modifier 1 (UFM1) via a C-to-N sequential TSAL ester-induced ligation strategy, and the chemical synthesis of protein Mtb CM through a combined strategy of Ser/Thr ligation and TSAL ester-induced ligations.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Wenge Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Kang Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
2
|
Liu H, Chow HY, Liu J, Shi P, Li X. Prior disulfide bond-mediated Ser/Thr ligation. Chem Sci 2024:d4sc04825c. [PMID: 39170718 PMCID: PMC11333947 DOI: 10.1039/d4sc04825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In this work, we developed a novel strategy, prior disulfide bond-mediated Ser/Thr ligation (PD-STL), for the chemical synthesis of peptides and proteins. This approach combines disulfide bond-forming chemistry with Ser/Thr ligation (STL), converting intermolecular STL into intramolecular STL to effectively proceed regardless of concentrations. We demonstrated the effectiveness of PD-STL under high dilution conditions, even for the relatively inert C-terminal proline at the ligation site. Additionally, we applied this method to synthesize the N-terminal cytoplasmic domain (2-104) of caveolin-1 and its Tyr14 phosphorylated form.
Collapse
Affiliation(s)
- Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| |
Collapse
|
3
|
Siebert A, Kazmaier U. Chemical Ligation-Mediated Total Synthesis of Corramycin. Org Lett 2024; 26:3169-3173. [PMID: 38564715 DOI: 10.1021/acs.orglett.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The ligation-mediated total synthesis of corramycin, a myxobacterial natural product of the strain Corallococcus coralloides, is presented. The synthetic strategy included using two consecutive chemical ligations for a modular and efficient preparation. Finally, the synthesis employed a Ser/Thr ligation (STL) at a new ligation site combined with classical fragment coupling. This study provides the total synthesis of corramycin and enhances the preparative toolbox of STL in organic synthesis.
Collapse
Affiliation(s)
- Andreas Siebert
- Organic Chemistry I, Saarland University, Campus, Building C4.2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Organic Chemistry I, Saarland University, Campus, Building C4.2, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus, C8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Wang X, Jin K. Robust Chemical Synthesis of "Difficult Peptides" via 2-Hydroxyphenol-pseudoproline (ψ 2-hydroxyphenolpro) Modifications. J Org Chem 2024; 89:3143-3149. [PMID: 38373048 DOI: 10.1021/acs.joc.3c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The challenging preparation of "difficult peptides" has always hindered the development of peptide-active pharmaceutical ingredients. Pseudoproline (ψpro) building blocks have been proven effective and powerful tools for the synthesis of "difficult peptides". In this paper, we efficiently prepared a set of novel 2-(oxazolidin-2-yl)phenol compounds as proline surrogates (2-hydroxyphenol-pseudoprolines, ψ2-hydroxyphenolpro) and applied it in the synthesis of many well-known "difficult peptides", including human thymosin α1, amylin, and β-amyloid (1-42) (Aβ42).
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
5
|
Lin S, Mo Z, Wang P, He C. Oxidation and Phenolysis of Peptide/Protein C-Terminal Hydrazides Afford Salicylaldehyde Ester Surrogates for Chemical Protein Synthesis. J Am Chem Soc 2023. [PMID: 37470345 DOI: 10.1021/jacs.3c05190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
With the growing popularity of serine/threonine ligation (STL) and cysteine/penicillamine ligation (CPL) in chemical protein synthesis, facile and general approaches for the preparation of peptide salicylaldehyde (SAL) esters are urgently needed, especially those viable for obtaining expressed protein SAL esters. Herein, we report the access of SAL ester surrogates from peptide hydrazides (obtained either synthetically or recombinantly) via nitrite oxidation and phenolysis by 3-(1,3-dithian-2-yl)-4-hydroxybenzoic acid (SAL(-COOH)PDT). The resulting peptide SAL(-COOH)PDT esters can be activated to afford the reactive peptide SAL(-COOH) esters for subsequent STL/CPL. While being operationally simple for both synthetic peptides and expressed proteins, the current strategy facilitates convergent protein synthesis and combined application of STL with NCL. The generality of the strategy is showcased by the N-terminal ubiquitination of the growth arrest and DNA damage-inducible protein (Gadd45a), the efficient synthesis of ubiquitin-like protein 5 (UBL-5) via a combined N-to-C NCL-STL strategy, and the C-to-N semisynthesis of a myoglobin (Mb) variant.
Collapse
Affiliation(s)
- Shaomin Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zeyuan Mo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Kaguchi R, Katsuyama A, Sato T, Takahashi S, Horiuchi M, Yokota SI, Ichikawa S. Discovery of Biologically Optimized Polymyxin Derivatives Facilitated by Peptide Scanning and In Situ Screening Chemistry. J Am Chem Soc 2023; 145:3665-3681. [PMID: 36708325 DOI: 10.1021/jacs.2c12971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Peptides can be converted to highly active compounds by introducing appropriate substituents on the suitable amino acid residue. Although modifiable residues in peptides can be systematically identified by peptide scanning methodologies, there is no practical method for optimization at the "scanned" position. With the purpose of using derivatives not only for scanning but also as a starting point for further chemical functionalization, we herein report the "scanning and direct derivatization" strategy through chemoselective acylation of embedded threonine residues by a serine/threonine ligation (STL) with the help of in situ screening chemistry. We have applied this strategy to the optimization of the polymyxin antibiotics, which were selected as a model system to highlight the power of the rapid derivatization of active scanning derivatives. Using this approach, we explored the structure-activity relationships of the polymyxins and successfully prepared derivatives with activity against polymyxin-resistant bacteria and those with Pseudomonas aeruginosa selective antibacterial activity. This strategy opens up efficient structural exploration and further optimization of peptide sequences.
Collapse
Affiliation(s)
- Rintaro Kaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan
| | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Minami-1, Nishi-16, Chuo-ku, Sapporo060-8543, Japan.,Division of Laboratory Medicine, Sapporo Medical University Hospital, Minami-1, Nishi-16, Chuo-ku, Sapporo060-8543, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,Graduate School of Infectious Diseases, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan.,One Health Research Center, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo060-0818, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami-1, Nishi-17, Chuo-ku, Sapporo060-8556, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo060-0812, Japan
| |
Collapse
|
7
|
Asiimwe N, Al Mazid MF, Murale DP, Kim YK, Lee J. Recent advances in protein modifications techniques for the targeting
N‐terminal
cysteine. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicholas Asiimwe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST) Seoul Korea
- Bio‐Med Program, KIST‐School UST Seoul Korea
| | | | | | - Yun Kyung Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST) Seoul Korea
- Bio‐Med Program, KIST‐School UST Seoul Korea
| | - Jun‐Seok Lee
- Department of Pharmacology Korea University College of Medicine Seoul Korea
| |
Collapse
|
8
|
Tan Y, Wu H, Wei T, Li X. Chemical Protein Synthesis: Advances, Challenges, and Outlooks. J Am Chem Soc 2020; 142:20288-20298. [PMID: 33211477 DOI: 10.1021/jacs.0c09664] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Contemporary chemical protein synthesis has been dramatically advanced over the past few decades, which has enabled chemists to reach the landscape of synthetic biomacromolecules. Chemical synthesis can produce synthetic proteins with precisely controlled structures which are difficult or impossible to obtain via gene expression systems. Herein, we summarize the key enabling ligation technologies, major strategic developments, and some selected representative applications of synthetic proteins and provide an outlook for future development.
Collapse
Affiliation(s)
- Yi Tan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| |
Collapse
|
9
|
Tan Y, Li J, Jin K, Liu J, Chen Z, Yang J, Li X. Cysteine/Penicillamine Ligation Independent of Terminal Steric Demands for Chemical Protein Synthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yi Tan
- Department of Chemistry State Key Lab of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jiasheng Li
- Department of Chemistry State Key Lab of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Kang Jin
- Department of Chemistry State Key Lab of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry State Key Lab of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ziyong Chen
- Department of Chemistry State Key Lab of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jun Yang
- Department of Chemistry State Key Lab of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry State Key Lab of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
10
|
Tan Y, Li J, Jin K, Liu J, Chen Z, Yang J, Li X. Cysteine/Penicillamine Ligation Independent of Terminal Steric Demands for Chemical Protein Synthesis. Angew Chem Int Ed Engl 2020; 59:12741-12745. [PMID: 32343022 DOI: 10.1002/anie.202003652] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/15/2020] [Indexed: 01/03/2023]
Abstract
The chemical ligation of two unprotected peptides to generate a natural peptidic linkage specifically at the C- and N-termini is a desirable goal in chemical protein synthesis but is challenging because it demands high reactivity and selectivity (chemo-, regio-, and stereoselectivity). We report an operationally simple and highly effective chemical peptide ligation involving the ligation of peptides with C-terminal salicylaldehyde esters to peptides with N-terminal cysteine/penicillamine. The notable features of this method include its tolerance of steric hinderance from the side groups on either ligating terminus, thereby allowing flexible disconnection at sites that are otherwise difficult to functionalize. In addition, this method can be expanded to selective desulfurization and one-pot ligation-desulfurization reactions. The effectiveness of this method was demonstrated by the synthesis of VISTA (216-311), PD-1 (192-288) and Eglin C.
Collapse
Affiliation(s)
- Yi Tan
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Jiasheng Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Kang Jin
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Ziyong Chen
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Jun Yang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
11
|
Chow HY, Zhang Y, Matheson E, Li X. Ligation Technologies for the Synthesis of Cyclic Peptides. Chem Rev 2019; 119:9971-10001. [PMID: 31318534 DOI: 10.1021/acs.chemrev.8b00657] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic peptides have been attracting a lot of attention in recent decades, especially in the area of drug discovery, as more and more naturally occurring cyclic peptides with diverse biological activities have been discovered. Chemical synthesis of cyclic peptides is essential when studying their structure-activity relationships. Conventional peptide cyclization methods via direct coupling have inherent limitations, like the susceptibility to epimerization at the C-terminus, poor solubility of fully protected peptide precursors, and low yield caused by oligomerization. In this regard, chemoselective ligation-mediated cyclization methods have emerged as effective strategies for cyclic peptide synthesis. The toolbox for cyclic peptide synthesis has been expanded substantially in the past two decades, allowing more efficient synthesis of cyclic peptides with various scaffolds and modifications. This Review will explore different chemoselective ligation technologies used for cyclic peptide synthesis that generate both native and unnatural peptide linkages. The practical issues and limitations of different methods will be discussed. The advance in cyclic peptide synthesis will benefit the biological and medicinal study of cyclic peptides, an important class of macrocycles with potentials in numerous fields, notably in therapeutics.
Collapse
Affiliation(s)
- Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Eilidh Matheson
- School of Chemistry , University of Edinburgh , Edinburgh EH8 9LE , United Kingdom
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , P. R. China
| |
Collapse
|
12
|
Liu H, Liu H, Li X. Use of Serine/Threonine Ligation for the Total Chemical Synthesis of HMGA1a Protein with Site‐Specific Lysine Acetylations. Chempluschem 2019; 84:779-785. [DOI: 10.1002/cplu.201900130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/10/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Heng Liu
- Department of Chemistry State Key Laboratory of Synthetic ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Han Liu
- Department of Chemistry State Key Laboratory of Synthetic ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry State Key Laboratory of Synthetic ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
13
|
Zhang Y, Liang Y, Huang F, Zhang Y, Li X, Xia J. Site-Selective Lysine Reactions Guided by Protein-Peptide Interaction. Biochemistry 2019; 58:1010-1018. [PMID: 30624906 DOI: 10.1021/acs.biochem.8b01223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Site-selective lysine post-translational modifications such as acetylation, methylation, hydroxylation, and isopeptide formation mediate the precise control of important signaling events in cells with unmistakable accuracy. This unparalleled site selectivity (modification of a single lysine in a particular protein in the proteome) is still a challenge for non-enzymatic protein reactions; the difficulty lies in the differentiation of the lysine ε-amino group from other reactive groups and in the precise pinpointing of one particular lysine ε-amino group out of many other lysine ε-amino groups and the N-terminal amine of the protein that have similar chemical reactivity. Here, we have explored proximal lysine conjugation reactions through peptide-guided fluorodinitrobenzene, isothiocyanate, and phenyl ester reactions and have validated the site-specific targeting of the ε-amino group of one single lysine in natural proteins that contain multiple lysine residues. This precise site selectivity is a result of the proximity-induced reactivity guided by a specific protein-peptide interaction: the binding interaction preorganizes an amine-reactive group in the peptide and one of the lysine side chain ε-amino groups of the protein into close proximity, thereby confining the reactivity to a selected area of the target protein. The binding-guide lysine reactions were first examined on an SH3 domain and then tested on several ubiquitin-like proteins such as SUMO, Atg8 protein family, plant ATG8, and mammalian LC3 proteins that contain at least seven lysine residues on the surface. Exquisite site selectivity was confirmed in all of the proteins tested. A set of amine reactions were tested for their feasibility in the site-selective lysine reaction. Selected amine-reactive groups were optimized, and the reaction sites on the LC3 protein were confirmed by mass spectrometry.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| | - Yujie Liang
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| | - Feng Huang
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| | - Yue Zhang
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , Hong Kong SAR
| | - Xuechen Li
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , Hong Kong SAR
| | - Jiang Xia
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| |
Collapse
|
14
|
Grassi L, Roschger C, Stanojlović V, Cabrele C. An explorative study towards the chemical synthesis of the immunoglobulin G1 Fc CH3 domain. J Pept Sci 2018; 24:e3126. [PMID: 30346065 PMCID: PMC6646916 DOI: 10.1002/psc.3126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Monoclonal antibodies, fusion proteins including the immunoglobulin fragment c (Ig Fc) CH2‐CH3 domains, and engineered antibodies are prominent representatives of an important class of drugs and drug candidates, which are referred to as biotherapeutics or biopharmaceuticals. These recombinant proteins are highly heterogeneous due to their glycosylation pattern. In addition, enzyme‐independent reactions, like deamidation, dehydration, and oxidation of sensitive side chains, may contribute to their heterogeneity in a minor amount. To investigate the biological impact of a spontaneous chemical modification, especially if found to be recurrent in a biotherapeutic, it would be necessary to reproduce it in a homogeneous manner. Herein, we undertook an explorative study towards the chemical synthesis of the IgG1 Fc CH3 domain, which has been shown to undergo spontaneous changes like succinimide formation and methionine oxidation. We used Fmoc‐solid‐phase peptide synthesis (SPPS) and native chemical ligation (NCL) to test the accessibility of large fragments of the IgG1 Fc CH3 domain. In general, the incorporation of pseudoproline dipeptides improved the quality of the crude peptide precursors; however, sequences larger than 44 residues could not be achieved by standard stepwise elongation with Fmoc‐SPPS. In contrast, the application of NCL with cysteine residues, which were either native or introduced ad hoc, allowed the assembly of the C‐terminal IgG1 Fc CH3 sequence 371 to 450. The syntheses reported here show advantages and limitations of the chemical approaches chosen for the preparation of the synthetic IgG1 Fc CH3 domain and will guide future plans towards the synthesis of both the native and selectively modified full‐length domain.
Collapse
Affiliation(s)
- Luigi Grassi
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Cornelia Roschger
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Vesna Stanojlović
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| |
Collapse
|
15
|
Abstract
Synthetic proteins are expected to go beyond the boundary of recombinant DNA expression systems by being flexibly installed with site-specific natural or unnatural modification structures during synthesis. To enable protein chemical synthesis, peptide ligations provide effective strategies to assemble short peptide fragments obtained from solid-phase peptide synthesis (SPPS) into long peptides and proteins. In this regard, chemoselective peptide ligation represents a simple but powerful transformation realizing selective amide formation between the C-terminus and N-terminus of two side-chain-unprotected peptide fragments. These reactions are highly chemo- and regioselective to tolerate the side-chain functionalities present on the unprotected peptides, highly reactive to work with millmolar or submillimolar concentrations of the substrates, and operationally simple with mild conditions and accessible building blocks. This Account focuses on our work in the development of serine/threonine ligation (STL), which originates from a chemoselective reaction between an unprotected peptide with a C-terminal salicylaldehyde (SAL) ester and another unprotected peptide with an N-terminal serine or threonine residue. Mechanistically, STL involves imine capture, 5- endo-trig ring-chain tautomerization, O-to- N [1,5] acyl transfer to afford the N, O-benzylidene acetal-linked peptide, and acidolysis to regenerate the Xaa-Ser/Thr linkage (where Xaa is the amino acid) at the ligation site. The high abundance of serine and threonine residues (12.7%) in naturally occurring proteins and the good compatibility of STL with various C-terminal residues provide multiple choices for ligation sites. The requisite peptide C-terminal SAL esters can be prepared from the peptide fragments obtained from both Fmoc-SPPS and Boc-SPPS through four available methods (a safety-catch strategy based on phenolysis, direct coupling, ozonolysis, and the n + 1 strategy). In the synthesis of proteins (e.g., ACYP enzyme, MUC1 glycopeptide 40-mer to 80-mer, interleukin 25, and HMGA1a with variable post-translational modification patterns), both C-to- N and N-to- C sequential STL strategies have been developed through selection of temporal N-terminal protecting groups and proper design of the switch-on/off C-terminal SAL ester surrogate, respectively. In the synthesis of cyclic peptide natural products (e.g., daptomycin, teixobactin, cyclomontanin B, yunnanin C) and their analogues, intramolecular head-to-tail STL has been implemented on linear peptide SAL ester precursors containing four to 10 amino acid residues with good efficiency and minimized oligomerization. As a thiol-independent chemoselective ligation complementary to native chemical ligation, STL provides an alternative tool for the chemical synthesis of homogeneous proteins with site-specific and structure-defined modifications and cyclic peptide natural products, which lays foundation for chemical biology and medicinal studies of those molecules with biological importance and therapeutic potential.
Collapse
Affiliation(s)
- Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
16
|
Site-selective covalent reactions on proteinogenic amino acids. Curr Opin Biotechnol 2017; 48:220-227. [DOI: 10.1016/j.copbio.2017.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022]
|
17
|
Roberts AG, Johnston EV, Shieh JH, Sondey JP, Hendrickson RC, Moore MAS, Danishefsky SJ. Fully Synthetic Granulocyte Colony-Stimulating Factor Enabled by Isonitrile-Mediated Coupling of Large, Side-Chain-Unprotected Peptides. J Am Chem Soc 2015; 137:13167-75. [PMID: 26401918 PMCID: PMC4617663 DOI: 10.1021/jacs.5b08754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human granulocyte colony-stimulating factor (G-CSF) is an endogenous glycoprotein involved in hematopoiesis. Natively glycosylated and nonglycosylated recombinant forms, lenograstim and filgrastim, respectively, are used clinically to manage neutropenia in patients undergoing chemotherapeutic treatment. Despite their comparable therapeutic potential, the purpose of O-linked glycosylation at Thr133 remains a subject of controversy. In light of this, we have developed a synthetic platform to prepare G-CSF aglycone with the goal of enabling access to native and designed glycoforms with site-selectivity and glycan homogeneity. To address the synthesis of a relatively large, aggregation-prone sequence, we advanced an isonitrile-mediated ligation method. The chemoselective activation and coupling of C-terminal peptidyl Gly thioacids with the N-terminus of an unprotected peptide provide ligated peptides directly in a manner complementary to that with conventional native chemical ligation-desulfurization strategies. Herein, we describe the details and application of this method as it enabled the convergent total synthesis of G-CSF aglycone.
Collapse
Affiliation(s)
- Andrew G. Roberts
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Eric V. Johnston
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Jae-Hung Shieh
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Joseph P. Sondey
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Ronald C. Hendrickson
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Malcolm A. S. Moore
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Samuel J. Danishefsky
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
18
|
Howard CJ, Yu RR, Gardner ML, Shimko JC, Ottesen JJ. Chemical and biological tools for the preparation of modified histone proteins. Top Curr Chem (Cham) 2015; 363:193-226. [PMID: 25863817 DOI: 10.1007/128_2015_629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through a large network of dynamic post-translational modifications (PTMs) which ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to understand better the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. We also cover the chemical ligation techniques which have been invaluable in the generation of complex modified histones indistinguishable from their natural counterparts. We end with a prospectus on future directions.
Collapse
Affiliation(s)
- Cecil J Howard
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | |
Collapse
|
19
|
Lee CL, Li X. Serine/threonine ligation for the chemical synthesis of proteins. Curr Opin Chem Biol 2014; 22:108-14. [DOI: 10.1016/j.cbpa.2014.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 11/26/2022]
|