1
|
Sharma S, Ali ME. How do the mutations in PfK13 protein promote anti-malarial drug resistance? J Biomol Struct Dyn 2023; 41:7329-7338. [PMID: 36153000 DOI: 10.1080/07391102.2022.2120539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
Plasmodium falciparum develops resistance to artemisinin upon exposure to the anti-malarial drug. Various mutations in the Plasmodium falciparum Kelch13 (PfK13) protein such as Y493H, R539T, I543T and C580Y have been associated with anti-malarial drug resistance. These mutations impede the regular ubiquitination process that eventually invokes drug resistance. However, the relationship between the mutation and the mechanism of drug resistance has not yet been fully elucidated. The comparative protein dynamics are studied by performing the classical molecular dynamics (MD) simulations and subsequent analysis of the trajectories adopting root-mean-square fluctuations, the secondary-structure predictions and the dynamical cross-correlation matrix analysis tools. Here, we observed that the mutations in the Kelch-domain do not have any structural impact on the mutated site; however, it significantly alters the overall dynamics of the protein. The loop-region of the BTB-domain especially for Y493H and C580Y mutants is found to have the enhanced dynamical fluctuations. The enhanced fluctuations in the BTB-domain could affect the protein-protein (PfK13-Cullin) binding interactions in the ubiquitination process and eventually lead to anti-malarial drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, India
| |
Collapse
|
2
|
Fang Y, Li L, Sui M, Jiang Q, Dong N, Shan A, Jiang J. Protein Transduction System Based on Tryptophan-zipper against Intracellular Infections via Inhibiting Ferroptosis of Macrophages. ACS NANO 2023; 17:12247-12265. [PMID: 37350353 DOI: 10.1021/acsnano.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Cells penetrating molecules in living systems hold promise of capturing and eliminating threats and damage that can plan intracellular fate promptly. However, it remains challenging to construct cell penetration systems that are physiologically stable with predictable self-assembly behavior and well-defined mechanisms. In this study, we develop a core-shell nanoparticle using a hyaluronic acid (HA)-coated protein transduction domain (PTD) derived from the human immunodeficiency virus (HIV). This nanoparticle can encapsulate pathogens, transporting the PTD into macrophages via lipid rafts. PTD forms hydrogen bonds with the components of the membrane through TAT, which has a high density of positive charges and reduces the degree of membrane order through Tryptophan (Trp)-zipper binding to the acyl tails of phospholipid molecules. HA-encapsulated PTD increases the resistance to trypsin and proteinase K, thereby penetrating macrophages and eliminating intracellular infections. Interestingly, the nonagglutination mechanism of PTD against pathogens ensures the safe operation of the cellular system. Importantly, PTD can activate the critical pathway of antiferroptosis in macrophages against pathogen infection. The nanoparticles developed in this study demonstrate safety and efficacy against Gram-negative and Gram-positive pathogens in three animal models. Overall, this work highlights the effectiveness of the PTD nanoparticle in encapsulating pathogens and provides a paradigm for transduction systems-anti-intracellular infection therapy.
Collapse
Affiliation(s)
- Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling Li
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Mingrui Sui
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Qianzhi Jiang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Junguang Jiang
- The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China
| |
Collapse
|
3
|
Sabzian‐Molaei F, Hosseini S, Bolhassani A, Eskandari V, Norouzi S, Hadi A. Antiviral Effect of Saffron Compounds on the GP120 of HIV‐1: an In Silico Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202203471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS Pasteur Institute of Iran Tehran Iran
| | - Vahid Eskandari
- Cellular and Molecular Research Center Yasuj University of Medical Sciences Yasuj Iran
| | - Saeed Norouzi
- College of Engineering, School of Mechanical Engineering University of Tehran Tehran Iran
| | - Amin Hadi
- Cellular and Molecular Research Center Yasuj University of Medical Sciences Yasuj Iran
| |
Collapse
|
4
|
In Silico Drug Screening Analysis against the Overexpression of PGAM1 Gene in Different Cancer Treatments. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5515692. [PMID: 34195264 PMCID: PMC8184345 DOI: 10.1155/2021/5515692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 05/24/2021] [Indexed: 01/24/2023]
Abstract
Phosphoglycerate mutase 1 (PGAM1) is considered as a novel target for multiple types of cancer drugs for the upregulation in tumor, cell prefoliation, and cell migration. During aerobic glycolysis, PGAM1 plays a critical role in cancer cell metabolism by catalyzing the conversion of 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG). In this computational-based study, the molecular docking approach was used with the best binding active sites of PGAM1 to screen 5,000 Chinese medicinal phytochemical library. The docking results were three ligands with docking score, RMSD-refine, and residues. Docking scores were -16.57, -15.22, and -15.74. RMSD values were 0.87, 2.40, and 0.98, and binding site residues were Arg 191, Arg 191, Arg 116, Arg 90, Arg 10, and Tyr 92. The best compounds were subjected to ADMETsar, ProTox-2 server, and Molinspiration analysis to evaluate the toxicological and drug likeliness potential of such selected compounds. The UCSF-Chimera tool was used to visualize the results, which shows that the three medicinal compounds named N-Nitrosohexamethyleneimine, Subtrifloralactone-K, and Kanzonol-N in chain-A were successfully binding with the active pockets of PGAM1. The study might facilitate identifying the hit molecules that could be beneficial in the development of antidrugs against various types of cancer treatment. These hit phytochemicals could be beneficial for further investigation of a novel target for cancer.
Collapse
|
5
|
Du S, Yang B, Wang X, Li WY, Lu XH, Zheng ZH, Ma Y, Wang RL. Identification of potential leukocyte antigen-related protein (PTP-LAR) inhibitors through 3D QSAR pharmacophore-based virtual screening and molecular dynamics simulation. J Biomol Struct Dyn 2019; 38:4232-4245. [PMID: 31588870 DOI: 10.1080/07391102.2019.1676825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Owing to its negative regulatory role in insulin signaling, protein tyrosine phosphatase of leukocyte antigen-related protein (PTP-LAR) was widely thought as a potential drug target for diabetes. Now, it was urgent to search for potential LAR inhibitors targeting diabetes. Initially, the pharmacophore models of LAR inhibitors were established with the application of the HypoGen module. The cost analysis, test set validation, as well as Fischer's test was used to verify the efficiency of pharmacophore model. Then, the best pharmacophore model (Hypo-1-LAR) was applied for the virtual screening of the ZINC database. And 30 compounds met the Lipinski's rule of five. Among them, 10 compounds with better binding affinity than the known LAR inhibitor (BDBM50296375) were discovered by docking studies. Finally, molecular dynamics simulations and post-analysis experiments (RMSD, RMSF, PCA, DCCM and RIN) were conducted to explore the effect of ligands (ZINC97018474 and Compound 1) on LAR and preliminary understand why ZINC97018474 had better inhibitory activity than Compound 1 (BDBM50296375). Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shan Du
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Bing Yang
- Department of Cell Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xin Wang
- Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xin-Hua Lu
- Key Laboratory for New Drug Screening Technology of Shijiazhuang City, New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei, China
| | - Zhi-Hui Zheng
- Key Laboratory for New Drug Screening Technology of Shijiazhuang City, New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Camarero JA, Campbell MJ. The Potential of the Cyclotide Scaffold for Drug Development. Biomedicines 2019; 7:biomedicines7020031. [PMID: 31010257 PMCID: PMC6631875 DOI: 10.3390/biomedicines7020031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclotides are a novel class of micro-proteins (≈30-40 residues long) with a unique topology containing a head-to-tail cyclized backbone structure further stabilized by three disulfide bonds that form a cystine knot. This unique molecular framework makes them exceptionally stable to physical, chemical, and biological degradation compared to linear peptides of similar size. The cyclotides are also highly tolerant to sequence variability, aside from the conserved residues forming the cystine knot, and are orally bioavailable and able to cross cellular membranes to modulate intracellular protein-protein interactions (PPIs), both in vitro and in vivo. These unique properties make them ideal scaffolds for many biotechnological applications, including drug discovery. This review provides an overview of the properties of cyclotides and their potential for the development of novel peptide-based therapeutics. The selective disruption of PPIs still remains a very challenging task, as the interacting surfaces are relatively large and flat. The use of the cell-permeable highly constrained polypeptide molecular frameworks, such as the cyclotide scaffold, has shown great promise, as it provides unique pharmacological properties. The use of molecular techniques, such as epitope grafting, and molecular evolution have shown to be highly effective for the selection of bioactive cyclotides. However, despite successes in employing cyclotides to target PPIs, some of the challenges to move them into the clinic still remain.
Collapse
Affiliation(s)
- Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA 9033, USA.
| | - Maria Jose Campbell
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA.
| |
Collapse
|