1
|
Jirát-Ziółkowska N, Vít M, Groborz O, Kolouchová K, Červený D, Sedláček O, Jirák D. Long-term in vivo dissolution of thermo- and pH-responsive, 19F magnetic resonance-traceable and injectable polymer implants. NANOSCALE ADVANCES 2024; 6:3041-3051. [PMID: 38868824 PMCID: PMC11166117 DOI: 10.1039/d4na00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 06/14/2024]
Abstract
19F magnetic resonance (19F MR) tracers stand out for their wide range of applications in experimental and clinical medicine, as they can be precisely located in living tissues with negligible fluorine background. This contribution demonstrates the long-term dissolution of multiresponsive fluorinated implants designed for prolonged release. Implants were detected for 14 (intramuscular injection) and 20 (subcutaneous injection) months by 19F MR at 4.7 T, showing favorable MR relaxation times, biochemical stability, biological compatibility and slow, long-term dissolution. Thus, polymeric implants may become a platform for long-term local theranostics.
Collapse
Affiliation(s)
- Natalia Jirát-Ziółkowska
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University Katerinska 1660/32 Prague 121 08 Czech Republic
| | - Martin Vít
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
| | - Ondřej Groborz
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University Katerinska 1660/32 Prague 121 08 Czech Republic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovsky square 2 162 06 Prague Czech Republic
| | - Kristýna Kolouchová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovsky square 2 162 06 Prague Czech Republic
| | - David Červený
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Faculty of Health Studies, Technical University of Liberec Studentska 1402/2 Liberec 461 17 Czech Republic
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University Hlavova 8 Prague 128 00 Czech Republic
| | - Daniel Jirák
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Faculty of Health Studies, Technical University of Liberec Studentska 1402/2 Liberec 461 17 Czech Republic
| |
Collapse
|
2
|
Kaur J, Sridharr M. Key Insights on the Classification and Theranostic Applications of Magnetic Resonance Imaging Contrast Agents. ChemMedChem 2024; 19:e202300521. [PMID: 38246874 DOI: 10.1002/cmdc.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive molecular imaging tool being extensively employed in clinical and biomedical research for the detection of a broad spectrum of diseases. This technique offers remarkable spatial resolution, good tissue penetration and a high soft tissue contrast. Contrast agents (CAs) have been regularly used in MRI tests to enhance the resolution of MR images and to visualize the diseased sites in the body. In the past years, considerable efforts have been devoted towards developing new theranostic MRI agents that can be tailored to integrate the targeting and therapeutic functions in a single agent. In this review, we have underlined the role of the MRI CAs in the developing field of 'theranostics' and their recent applications in the combined imaging and therapy of different types of tumors. In addition, this review also outlines the different categories of MRI CAs and their comprehensive classification based on different criteria such as chemical composition, relaxation mechanism and biodistribution with clinically relevant examples.
Collapse
Affiliation(s)
- Jasleen Kaur
- Amity Institute of Virology and Immunology, Amity University, Sector-125, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Manasvini Sridharr
- LMU Biocenter, Martinsreid, Ludwig-Maximilians-Universität München, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, München, Germany
| |
Collapse
|
3
|
Chowdhury MSI, Kras EA, Turowski SG, Spernyak JA, Morrow JR. Liposomal MRI probes containing encapsulated or amphiphilic Fe(III) coordination complexes. Biomater Sci 2023; 11:5942-5954. [PMID: 37470467 PMCID: PMC11837487 DOI: 10.1039/d3bm00029j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Liposomes containing high-spin Fe(III) coordination complexes were prepared towards the production of T1 MRI probes with improved relaxivity. The amphiphilic Fe(III) complexes were anchored into the liposome with two alkyl chains to give a coordination sphere containing mixed amide and hydroxypropyl pendant groups. The encapsulated complex contains a macrocyclic ligand with three phosphonate pendants, [Fe(NOTP)]3-, which was chosen for its good aqueous solubility. Four types of MRI probes were prepared including those with intraliposomal Fe(III) complex (LipoA) alone, amphiphilic Fe(III) complex (LipoB), both intraliposomal and amphiphilic complex (LipoC) or micelles formed with amphiphilic complex. Water proton relaxivities r1 and r2 were measured and compared to a small molecule macrocyclic Fe(III) complex containing similar donor groups. Micelles of the amphiphilic Fe(III) complex had proton relaxivity values (r1 = 2.6 mM-1 s-1) that were four times higher than the small hydrophilic analog. Liposomes with amphiphilic Fe(III) complex (LipoB) have a per iron relaxivity of 2.6 mM-1 s-1 at pH 7.2, 34 °C at 1.4 T whereas liposomes containing both amphiphilic and intraliposomal Fe(III) complexes (lipoC) have r1 of 0.58 mM-1 s-1 on a per iron basis consistent with quenching of the interior Fe(III) complex relaxivity. Liposomes containing only encapsulated [Fe(NOTP)]3- have a lowered r1 of 0.65 mM-1 s-1 per iron complex. Studies show that the biodistribution and clearance of the different types liposomal nanoparticles differ greatly. LipoB is a blood pool agent with a long circulation time whereas lipoC is cleared more rapidly through both renal and hepatobiliary pathways. These clearance differences are consistent with lower stability of LipoC compared to LipoB.
Collapse
Affiliation(s)
- Md Saiful I Chowdhury
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260, USA.
| | - Elizabeth A Kras
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260, USA.
| | - Steven G Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260, USA.
| |
Collapse
|
4
|
Edwards IA, De Carlo F, Sitta J, Varner W, Howard CM, Claudio PP. Enhancing Targeted Therapy in Breast Cancer by Ultrasound-Responsive Nanocarriers. Int J Mol Sci 2023; 24:ijms24065474. [PMID: 36982548 PMCID: PMC10053544 DOI: 10.3390/ijms24065474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Currently, the response to cancer treatments is highly variable, and severe side effects and toxicity are experienced by patients receiving high doses of chemotherapy, such as those diagnosed with triple-negative breast cancer. The main goal of researchers and clinicians is to develop new effective treatments that will be able to specifically target and kill tumor cells by employing the minimum doses of drugs exerting a therapeutic effect. Despite the development of new formulations that overall can increase the drugs’ pharmacokinetics, and that are specifically designed to bind overexpressed molecules on cancer cells and achieve active targeting of the tumor, the desired clinical outcome has not been reached yet. In this review, we will discuss the current classification and standard of care for breast cancer, the application of nanomedicine, and ultrasound-responsive biocompatible carriers (micro/nanobubbles, liposomes, micelles, polymeric nanoparticles, and nanodroplets/nanoemulsions) employed in preclinical studies to target and enhance the delivery of drugs and genes to breast cancer.
Collapse
Affiliation(s)
- Isaiah A. Edwards
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Flavia De Carlo
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William Varner
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence:
| |
Collapse
|
5
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
6
|
Abozeid SM, Chowdhury MSI, Asik D, Spernyak JA, Morrow JR. Liposomal Fe(III) Macrocyclic Complexes with Hydroxypropyl Pendants as MRI Probes. ACS APPLIED BIO MATERIALS 2021; 4:7951-7960. [PMID: 35006776 PMCID: PMC9124523 DOI: 10.1021/acsabm.1c00879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paramagnetic liposomes containing Fe(III) complexes were prepared by incorporation of mononuclear (Fe(L1) or Fe(L3)) or dinuclear (Fe2(L2)) coordination complexes of 1,4,7-triazacyclononane macrocycles containing 2-hydroxypropyl pendant groups. Two different types of paramagnetic liposomes were prepared. The first type, LipoA, has the mononuclear Fe(L1) complex loaded into the internal aqueous core. The second type, LipoB, has the amphiphilic Fe(L3) complex inserted into the liposomal bilayer and the internal aqueous core loaded with either Fe(L1) (LipoB1) or Fe2(L2) (LipoB2). LipoA enhances both T1 and T2 water proton relaxation rates. Treatment of LipoA with osmotic gradients to produce a nonspherical liposome produces a liposome with a chemical exchange saturation transfer effect as shown by an asymmetry analysis but only at high osmolarity. LipoB1, which contains an amphiphilic complex in the liposomal bilayer, produced a broadened Z-spectrum upon treatment of the liposome with osmotic gradients. The r1 relaxivity of LipoB1 and LipoB2 were higher than the r1 relaxivity of LipoA on a per Fe basis, suggesting an important contribution from the amphiphilic Fe(III) center. The r1 relaxivities of paramagnetic liposomes are relatively constant over a range of magnetic field strengths (1.4-9.4 T), with the ratio of r2/r1 substantially increasing at high field strengths. MRI studies of LipoB1 in mice showed prolonged contrast enhancement in blood compared to the clinically employed Gd(DOTA), which was injected at a 2-fold higher dose per metal than the Fe(III)-loaded liposomes.
Collapse
Affiliation(s)
- Samira M. Abozeid
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516 Mansoura, Egypt
| | - Md Saiful I. Chowdhury
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
| | - Didar Asik
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, New York 14263 United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
| |
Collapse
|
7
|
Preparation and characterization of gadolinium-based thermosensitive liposomes: A potential nanosystem for selective drug delivery to cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Nanocarriers as Magic Bullets in the Treatment of Leukemia. NANOMATERIALS 2020; 10:nano10020276. [PMID: 32041219 PMCID: PMC7075174 DOI: 10.3390/nano10020276] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
Abstract
Leukemia is a type of hematopoietic stem/progenitor cell malignancy characterized by the accumulation of immature cells in the blood and bone marrow. Treatment strategies mainly rely on the administration of chemotherapeutic agents, which, unfortunately, are known for their high toxicity and side effects. The concept of targeted therapy as magic bullet was introduced by Paul Erlich about 100 years ago, to inspire new therapies able to tackle the disadvantages of chemotherapeutic agents. Currently, nanoparticles are considered viable options in the treatment of different types of cancer, including leukemia. The main advantages associated with the use of these nanocarriers summarized as follows: i) they may be designed to target leukemic cells selectively; ii) they invariably enhance bioavailability and blood circulation half-life; iii) their mode of action is expected to reduce side effects. FDA approval of many nanocarriers for treatment of relapsed or refractory leukemia and the desired results extend their application in clinics. In the present review, different types of nanocarriers, their capability in targeting leukemic cells, and the latest preclinical and clinical data are discussed.
Collapse
|
9
|
Magnetic Materials and Systems: Domain Structure Visualization and Other Characterization Techniques for the Application in the Materials Science and Biomedicine. INORGANICS 2020. [DOI: 10.3390/inorganics8010006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Magnetic structures have attracted a great interest due to their multiple applications, from physics to biomedicine. Several techniques are currently employed to investigate magnetic characteristics and other physicochemical properties of magnetic structures. The major objective of this review is to summarize the current knowledge on the usage, advances, advantages, and disadvantages of a large number of techniques that are currently available to characterize magnetic systems. The present review, aiming at helping in the choice of the most suitable method as appropriate, is divided into three sections dedicated to characterization techniques. Firstly, the magnetism and magnetization (hysteresis) techniques are introduced. Secondly, the visualization methods of the domain structures by means of different probes are illustrated. Lastly, the characterization of magnetic nanosystems in view of possible biomedical applications is discussed, including the exploitation of magnetism in imaging for cell tracking/visualization of pathological alterations in living systems (mainly by magnetic resonance imaging, MRI).
Collapse
|
10
|
Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Front Bioeng Biotechnol 2019; 7:324. [PMID: 31824930 PMCID: PMC6883936 DOI: 10.3389/fbioe.2019.00324] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
While ultrasound is most widely known for its use in diagnostic imaging, the energy carried by ultrasound waves can be utilized to influence cell function and drug delivery. Consequently, our ability to use ultrasound energy at a given intensity unlocks the opportunity to use the ultrasound for therapeutic applications. Indeed, in the last decade ultrasound-based therapies have emerged with promising treatment modalities for several medical conditions. More recently, ultrasound in combination with nanomedicines, i.e., nanoparticles, has been shown to have substantial potential to enhance the efficacy of many treatments including cancer, Alzheimer disease or osteoarthritis. The concept of ultrasound combined with drug delivery is still in its infancy and more research is needed to unfold the mechanisms and interactions of ultrasound with different nanoparticles types and with various cell types. Here we present the state-of-art in ultrasound and ultrasound-assisted drug delivery with a particular focus on cancer treatments. Notably, this review discusses the application of high intensity focus ultrasound for non-invasive tumor ablation and immunomodulatory effects of ultrasound, as well as the efficacy of nanoparticle-enhanced ultrasound therapies for different medical conditions. Furthermore, this review presents safety considerations related to ultrasound technology and gives recommendations in the context of system design and operation.
Collapse
Affiliation(s)
- Priyanka Tharkar
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Ramya Varanasi
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Wu Shun Felix Wong
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Craig T Jin
- Faculty of Engineering, School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Wojciech Chrzanowski
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
11
|
Nardecchia S, Sánchez-Moreno P, Vicente JD, Marchal JA, Boulaiz H. Clinical Trials of Thermosensitive Nanomaterials: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E191. [PMID: 30717386 PMCID: PMC6409767 DOI: 10.3390/nano9020191] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 01/18/2023]
Abstract
Currently, we are facing increasing demand to develop efficient systems for the detection and treatment of diseases that can realistically improve distinct aspects of healthcare in our society. Sensitive nanomaterials that respond to environmental stimuli can play an important role in this task. In this manuscript, we review the clinical trials carried out to date on thermosensitive nanomaterials, including all those clinical trials in hybrid nanomaterials that respond to other stimuli (e.g., magnetic, infrared radiation, and ultrasound). Specifically, we discuss their use in diagnosis and treatment of different diseases. At present, none of the existing trials focused on diagnosis take advantage of the thermosensitive characteristics of these nanoparticles. Indeed, almost all clinical trials consulted explore the use of Ferumoxytol as a current imaging test enhancer. However, the thermal property is being further exploited in the field of disease treatment, especially for the delivery of antitumor drugs. In this regard, ThermoDox®, based on lysolipid thermally sensitive liposome technology to encapsulate doxorubicin (DOX), is the flagship drug. In this review, we have evidenced the discrepancy existing between the number of published papers in thermosensitive nanomaterials and their clinical use, which could be due to the relative novelty of this area of research; more time is needed to validate it through clinical trials. We have no doubt that in the coming years there will be an explosion of clinical trials related to thermosensitive nanomaterials that will surely help to improve current treatments and, above all, will impact on patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Stefania Nardecchia
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Paola Sánchez-Moreno
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Juan de Vicente
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| |
Collapse
|
12
|
Reeβing F, Szymanski W. Following nanomedicine activation with magnetic resonance imaging: why, how, and what's next? Curr Opin Biotechnol 2018; 58:9-18. [PMID: 30390536 DOI: 10.1016/j.copbio.2018.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/14/2018] [Indexed: 02/08/2023]
Abstract
Nanomedicines, such as liposomal formulations, play an important role in cancer therapy. To support their development, medical imaging modalities are employed for following the drug delivery. Encapsulation of MRI contrast agents, which change their relaxivity upon co-release with the drug, is a promising strategy for monitoring both the biodistribution and payload release from a nanocarrier. This approach is successfully applied in preclinical settings to image the activation of liposomes responsive to heat, pH changes or sonication. Recent advances include combination with different treatments and the implementation of chemical exchange saturation transfer imaging to gain spectral resolution over different contrast agents. However, this field still faces challenges, such as matching the pharmacokinetic profiles of the contrast agents and the liberated drugs.
Collapse
Affiliation(s)
- Friederike Reeβing
- University Medical Center Groningen, Department of Radiology, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands; Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- University Medical Center Groningen, Department of Radiology, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands; Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|