1
|
Sun Y, Zhao J, Lu Y, Ngo FY, Shuai B, Zhang ZJ, Feng Y, Rong J. In Silico Prediction of Quercetin Analogs for Targeting Death-Associated Protein Kinase 1 (DAPK1) Against Alzheimer's Disease. Curr Neuropharmacol 2024; 22:2353-2367. [PMID: 38752632 PMCID: PMC11451310 DOI: 10.2174/1570159x22666240515090434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 10/06/2024] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that greatly affects the health and life quality of the elderly population. Existing drugs mainly alleviate symptoms but fail to halt disease progression, underscoring the urgent need for the development of novel drugs. Based on the neuroprotective effects of flavonoid quercetin in AD, this study was designed to identify potential AD-related targets for quercetin and perform in silico prediction of promising analogs for the treatment of AD. Database mining suggested death-associated protein kinase 1 (DAPK1) as the most promising AD-related target for quercetin among seven protein candidates. To achieve better biological effects for the treatment of AD, we devised a series of quercetin analogs as ligands for DAPK1, and molecular docking analyses, absorption, distribution, metabolism, and excretion (ADME) predictions, as well as molecular dynamics (MD) simulations, were performed. The energy for drug-protein interaction was predicted and ranked. As a result, quercetin-A1a and quercetin-A1a1 out of 19 quercetin analogs exhibited the lowest interaction energy for binding to DAPK1 than quercetin, and they had similar dynamics performance with quercetin. In addition, quercetin-A1a and quercetin-A1a1 were predicted to have better water solubility. Thus, quercetin-A1a and quercetin-A1a1 could be promising agents for the treatment of AD. Our findings paved the way for further experimental studies and the development of novel drugs.
Collapse
Affiliation(s)
- Yilu Sun
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jia Zhao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
- Zhu Nansun’s Workstation and Yu Jin’s Workstation, School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yizhu Lu
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Fung Yin Ngo
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang-Jin Zhang
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
2
|
Załuski M, Karcz T, Drabczyńska A, Vielmuth C, Olejarz-Maciej A, Głuch-Lutwin M, Mordyl B, Siwek A, Satała G, Müller CE, Kieć-Kononowicz K. Xanthine-Dopamine Hybrid Molecules as Multitarget Drugs with Potential for the Treatment of Neurodegenerative Diseases. Biomolecules 2023; 13:1079. [PMID: 37509114 PMCID: PMC10377586 DOI: 10.3390/biom13071079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multitarget drugs based on a hybrid dopamine-xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer's and Parkinson's diseases is warranted.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Anna Drabczyńska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Christin Vielmuth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| |
Collapse
|
3
|
Mateev E, Georgieva M, Mateeva A, Zlatkov A, Ahmad S, Raza K, Azevedo V, Barh D. Structure-Based Design of Novel MAO-B Inhibitors: A Review. Molecules 2023; 28:4814. [PMID: 37375370 DOI: 10.3390/molecules28124814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
With the significant growth of patients suffering from neurodegenerative diseases (NDs), novel classes of compounds targeting monoamine oxidase type B (MAO-B) are promptly emerging as distinguished structures for the treatment of the latter. As a promising function of computer-aided drug design (CADD), structure-based virtual screening (SBVS) is being heavily applied in processes of drug discovery and development. The utilization of molecular docking, as a helping tool for SBVS, is providing essential data about the poses and the occurring interactions between ligands and target molecules. The current work presents a brief discussion of the role of MAOs in the treatment of NDs, insight into the advantages and drawbacks of docking simulations and docking software, and a look into the active sites of MAO-A and MAO-B and their main characteristics. Thereafter, we report new chemical classes of MAO-B inhibitors and the essential fragments required for stable interactions focusing mainly on papers published in the last five years. The reviewed cases are separated into several chemically distinct groups. Moreover, a modest table for rapid revision of the revised works including the structures of the reported inhibitors together with the utilized docking software and the PDB codes of the crystal targets applied in each study is provided. Our work could be beneficial for further investigations in the search for novel, effective, and selective MAO-B inhibitors.
Collapse
Affiliation(s)
- Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Alexandrina Mateeva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Vasco Azevedo
- Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Debmalya Barh
- Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India
| |
Collapse
|
4
|
Kapri A, Gupta N, Nain S. Recent Advances in the Synthesis of Xanthines: A Short Review. SCIENTIFICA 2022; 2022:8239931. [PMID: 36398136 PMCID: PMC9666039 DOI: 10.1155/2022/8239931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Xanthine and its derivatives are considered a pharmacologically potential moiety that manifests immense biological activities. Owing to this much diversity in the biological field, this scaffold has fascinated the attention of many researchers around the globe to scrutinize its basic structure chemically as well as biologically. In recent years, xanthine derivatives have been used therapeutically in different pathological conditions due to their presence in day-to-day life. Herein, we review the recent progress in the synthesis of xanthine and its derivatives. Some of the widely used synthetic strategies such as (a) Traube's synthesis, (b) one-pot synthesis, (c) xanthine-anneleated synthesis, and (d) miscellaneous synthesis were compiled in this review paper. The results obtained from this review paper highlight the significance of various xanthine derivatives as possible leads to the development of new drugs. The data compiled in this review paper could help the medicinal chemist in designing new active compounds from the modification of the already existing compounds in the search for novel drug leads. This report concludes that the various synthetic procedures exemplified in this review paper may serve as a support system for the designing of new molecules with a xanthine scaffold. Thus, we hope that this molecule may serve as the prototype in order to find out more active xanthine derivatives.
Collapse
Affiliation(s)
- Anandi Kapri
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Nitin Gupta
- Agilent Technologies Pvt. Ltd., 181/46, Industrial Area, Phase-1, Chandigarh, India
| | - Sumitra Nain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
5
|
Załuski M, Schabikowski J, Jaśko P, Bryła A, Olejarz-Maciej A, Kaleta M, Głuch-Lutwin M, Brockmann A, Hinz S, Zygmunt M, Kuder K, Latacz G, Vielmuth C, Müller CE, Kieć-Kononowicz K. 8-Benzylaminoxanthine scaffold variations for selective ligands acting on adenosine A 2A receptors. Design, synthesis and biological evaluation. Bioorg Chem 2020; 101:104033. [PMID: 32629282 DOI: 10.1016/j.bioorg.2020.104033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022]
Abstract
A library of 34 novel compounds based on a xanthine scaffold was explored in biological studies for interaction with adenosine receptors (ARs). Structural modifications of the xanthine core were introduced in the 8-position (benzylamino and benzyloxy substitution) as well as at N1, N3, and N7 (small alkyl residues), thereby improving affinity and selectivity for the A2A AR. The compounds were characterized by radioligand binding assays, and our study resulted in the development of the potent A2A AR ligands including 8-((6-chloro-2-fluoro-3-methoxybenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12d; Ki human A2AAR: 68.5 nM) and 8-((2-chlorobenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12h; Ki human A2AAR: 71.1 nM). Moreover, dual A1/A2AAR ligands were identified in the group of 1,3-diethyl-7-methylxanthine derivatives. Compound 14b displayed Ki values of 52.2 nM for the A1AR and 167 nM for the A2AAR. Selected A2AAR ligands were further evaluated as inactive for inhibition of monoamine oxidase A, B and isoforms of phosphodiesterase-4B1, -10A, which represent classical targets for xanthine derivatives. Therefore, the developed 8-benzylaminoxanthine scaffold seems to be highly selective for AR activity and relevant for potent and selective A2A ligands. Compound 12d with high selectivity for ARs, especially for the A2AAR subtype, evaluated in animal models of inflammation has shown anti-inflammatory activity. Investigated compounds were found to display high selectivity and may therefore be of high interest for further development as drugs for treating cancer or neurodegenerative diseases.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Piotr Jaśko
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Adrian Bryła
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Andreas Brockmann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Christin Vielmuth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland.
| |
Collapse
|
6
|
Design, synthesis and biological evaluation of suramin-derived dual antagonists of the proinflammatory G protein-coupled receptors P2Y2 and GPR17. Eur J Med Chem 2020; 186:111789. [DOI: 10.1016/j.ejmech.2019.111789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/25/2019] [Accepted: 10/12/2019] [Indexed: 11/19/2022]
|