1
|
Kazancioglu MZ, Quirion K, Wipf P, Skoda EM. Enantioselective synthesis and selective functionalization of 4-aminotetrahydroquinolines as novel GLP-1 secretagogues. Chirality 2022; 34:521-536. [PMID: 34964164 PMCID: PMC8837726 DOI: 10.1002/chir.23403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023]
Abstract
Polysubstituted tetrahydroquinolines were obtained in moderate to high yields (28% to 92%) and enantiomeric ratios (er 89:11 to 99:1) by a three-component Povarov reaction using a chiral phosphoric acid catalyst. Significantly, post-Povarov functional group interconversions allowed a rapid access to a library of 36 enantioenriched 4-aminotetrahydroquinoline derivatives featuring five points of diversity. Selected analogs were assayed for their ability to function as glucagon-like peptide-1 (GLP-1) secretagogues.
Collapse
Affiliation(s)
- Mustafa Z. Kazancioglu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Kevin Quirion
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin M. Skoda
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Nikoofar K, Yielzoleh FM. High-component reactions (HCRs): An overview of MCRs containing seven or more components as versatile tools in organic synthesis. Curr Org Synth 2021; 19:115-147. [PMID: 34515008 DOI: 10.2174/1570179418666210910111208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
Recently, multi-component reactions (MCRs) have gained special attention due to their versatility for the synthesis of polycyclic heterocycles. Moreover, their applicability can become more widespread as they can be combined together as a union of MCRs. In this overview, the authors have tried to collect the MCRs containing more than seven components that can lead to effectual heterocycles in organic and/or pharmaceutical chemistry. The review contains papers published up to the end of 2020. The subject is classified based on the number of substrates, such as seven-, eight-, nine-, ten-, and more components. The authors expect their report to be helpful for researchers to clarify their route to significant MCRs.
Collapse
Affiliation(s)
- Kobra Nikoofar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran. Iran
| | | |
Collapse
|
3
|
Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1 H)-ones via a Three-Component Biginelli Reaction. Molecules 2021; 26:molecules26123753. [PMID: 34202951 PMCID: PMC8235482 DOI: 10.3390/molecules26123753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
Multicomponent reactions are considered to be of increasing importance as time progresses due to the economic and environmental advantages such strategies entail. The three-component Biginelli reaction involves the combination of an aldehyde, a β-ketoester and urea to produce 3,4-dihydropyrimidin-2(1H)-ones, also known as DHPMs. The synthesis of these products is highly important due to their myriad of medicinal properties, amongst them acting as calcium channel blockers and antihypertensive and anti-inflammatory agents. In this study, silicotungstic acid supported on Ambelyst-15 was used as a heterogeneous catalyst for the Biginelli reaction under solventless conditions. Electron-poor aromatic aldehydes gave the best results. Sterically hindered β-ketoesters resulted in lower reaction yields. The reaction was carried out under heterogeneous catalysis to allow easy recovery of the product from the reaction mixture and recycling of the catalyst. The heterogeneity of the reaction was confirmed by carrying out a hot filtration test.
Collapse
|
4
|
Keshari M, Khan RA, Khalilullah H, Yusuf M, Ahmed B. Pharmacophore modeling, design, and synthesis of potent antihypertensives, oxazolo/thiazolo-[3,2-a]-pyrimidin-3(2H)-one, and 1,5-dihydroimidazo-[1,2-a]-pyrimidin-3(2H)-one derivatives: A pilot trial. Bioorg Med Chem Lett 2020; 30:127604. [PMID: 33038546 DOI: 10.1016/j.bmcl.2020.127604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/07/2020] [Accepted: 10/03/2020] [Indexed: 01/27/2023]
Abstract
An improved pharmacophore model, molecular properties, geometric analyses, and SAR led to synthesize oxazolo/thiazolo-[3,2-a]-pyrimidin-3(2H)-one, and 1,5-dihydroimidazo-[1,2-a]-pyrimidin-3(2H)-one derivatives exhibiting potent anti-hypertensive activity. The 6-ethoxycarbonyl-2,7-dimethyl-5-phenyl-1,5-dihydroimidazo[3,2-a]pyrimidin-3(2H)-one (4g), and 6-ethoxycarbonyl-2,7-dimethyl-5-(3-methyl-phenyl)-1,5-dihydroimidazo[3,2-a]pyrimidin-3(2H)-one (4h) showed significant reduction in mean arterial blood pressure (MABP, mm/Hg) of 79.78%, and 92.95% in 6 and 12 h durations, respectively, at 1.5 mg/kg body-weight dose, while at 3.0 mg/kg body-weight dose, the MABP reduction was achieved at 95.46%, and 92.02%, respectively, in 6 and 12 h durations, as compared to the standard drug, nifedipine.
Collapse
Affiliation(s)
- Manoj Keshari
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Research, Jamia Hamdard, New Delhi 110062, India
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Mohammad Yusuf
- College of Pharmacy, Taif University, Al-Haweiah, Taif 21974, Saudi Arabia
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
5
|
Jethava KP, Fine J, Chen Y, Hossain A, Chopra G. Accelerated Reactivity Mechanism and Interpretable Machine Learning Model of N-Sulfonylimines toward Fast Multicomponent Reactions. Org Lett 2020; 22:8480-8486. [PMID: 33074678 DOI: 10.1021/acs.orglett.0c03083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce chemical reactivity flowcharts to help chemists interpret reaction outcomes using statistically robust machine learning models trained on a small number of reactions. We developed fast N-sulfonylimine multicomponent reactions for understanding reactivity and to generate training data. Accelerated reactivity mechanisms were investigated using density functional theory. Intuitive chemical features learned by the model accurately predicted heterogeneous reactivity of N-sulfonylimine with different carboxylic acids. Validation of the predictions shows that reaction outcome interpretation is useful for human chemists.
Collapse
|
6
|
Shaikh TM, Nagarajan S, Kandasamy E. One Pot Multicomponent Biginelli Reaction Employing Ionic Liquids as an Organocatalyst. CURRENT ORGANOCATALYSIS 2020. [DOI: 10.2174/2213337206666191001214521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
The N-heterocyclic compounds have been extensively studied in pharmaceutical
industries. Furthermore, syntheses of such compounds employing organo-catalyst have been associated
with sustainable technology.
Methods:
The synthesis of new, stable ionic liquids and their catalytic applications in one-pot multicomponent
Biginelli reaction is presented. The method provides broad substrate scope, yielding the
corresponding 3,4-dihydropyrimidin-2(1H)-ones and 3,4-dihydropyrimidin-2(1H)-thiones, in good to
excellent yields, respectively.
Results and Conclusion:
The developed reactions are associated with certain advantages, short reaction
time and sustainable conditions. The protocol has advantages eco-friendly procedure, recovery and
reusability of catalyst, which showed consistent activity.
Collapse
Affiliation(s)
- Tanveer M. Shaikh
- Department of Chemistry, CNCS, Mekelle University, Mek'ele, Ethiopia
| | | | - Elango Kandasamy
- Dhanvanthri Lab, Department of Sciences, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
7
|
Terrab L, Rosenker CJ, Johnstone L, Ngo LK, Zhang L, Ware NF, Miller B, Topacio AZ, Sannino S, Brodsky JL, Wipf P. Synthesis and Selective Functionalization of Thiadiazine 1,1-Dioxides with Efficacy in a Model of Huntington's Disease. ACS Med Chem Lett 2020; 11:984-990. [PMID: 32435415 DOI: 10.1021/acsmedchemlett.0c00018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The scope of the acid-mediated 3-component synthesis of thiadiazines was investigated. A selective functionalization of the six-membered heterocyclic core structure was accomplished by sequential alkylations, saponifications, and coupling reactions. Several new analogs of a dihydropyrimidinone Hsp70 chaperone agonist, MAL1-271, showed promising activity in a cell based model of Huntington's disease.
Collapse
Affiliation(s)
- Leila Terrab
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Christopher J. Rosenker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lisa Johnstone
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Linh K. Ngo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Li Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel F. Ware
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Bettina Miller
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea Z. Topacio
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Osano M, Jhaveri DP, Wipf P. Formation of 6-Azaindoles by Intramolecular Diels-Alder Reaction of Oxazoles and Total Synthesis of Marinoquinoline A. Org Lett 2020; 22:2215-2219. [PMID: 32105087 DOI: 10.1021/acs.orglett.0c00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new variant of the intramolecular Diels-Alder oxazole (IMDAO) cycloaddition that provides direct access to 6-azaindoles was developed. The IMDAO reaction was applied in a total synthesis of the aminophenylpyrrole-derived alkaloid marinoquinoline A, also featuring the use of a Curtius reaction for preparation of a 5-aminooxazole, a propargylic C,H-bond insertion, an in situ alkyne-allene isomerization, and a ruthenium-catalyzed cycloisomerization for benzene ring annulation to the 6-azaindole.
Collapse
Affiliation(s)
- Mana Osano
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Dishit P Jhaveri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|