1
|
Tuc Altaf C, Rostas AM, Popa A, Toloman D, Stefan M, Demirci Sankir N, Sankir M. Recent Advances in Photochargeable Integrated and All-in-One Supercapacitor Devices. ACS OMEGA 2023; 8:47393-47411. [PMID: 38144123 PMCID: PMC10734009 DOI: 10.1021/acsomega.3c07464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Photoassisted energy storage systems, which enable both the conversion and storage of solar energy, have attracted attention in recent years. These systems, which started about 20 years ago with the individual production of dye-sensitized solar cells and capacitors and their integration, today allow more compact and cost-effective designs using dual-acting electrodes. Solar-assisted batterylike or hybrid supercapacitors have also shown promise with their high energy densities. This review summarizes all of these device designs and conveys the cutting-edge studies in this field. Besides, this review aims to emphasize the effects of point, extrinsic, intrinsic, and 2D-planar defects on the performance of photoassisted energy storage systems since it is known that defect structures, as well as electrical, optical, and surface properties, affect the device performance. Here, it is also targeted to draw attention to how critical the design, material selection, and material properties are for these new-generation energy conversion and storage devices, which have a high potential to see commercial examples quickly and to be recognized by more readers.
Collapse
Affiliation(s)
- Cigdem Tuc Altaf
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu 06560 Ankara, Turkey
| | - Arpad Mihai Rostas
- National
Institute for Research and Development of Isotopic and
Molecular Technologies- INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Adriana Popa
- National
Institute for Research and Development of Isotopic and
Molecular Technologies- INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Dana Toloman
- National
Institute for Research and Development of Isotopic and
Molecular Technologies- INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria Stefan
- National
Institute for Research and Development of Isotopic and
Molecular Technologies- INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Nurdan Demirci Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu 06560 Ankara, Turkey
| | - Mehmet Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu 06560 Ankara, Turkey
| |
Collapse
|
2
|
Flores-Diaz N, De Rossi F, Das A, Deepa M, Brunetti F, Freitag M. Progress of Photocapacitors. Chem Rev 2023; 123:9327-9355. [PMID: 37294781 PMCID: PMC10416220 DOI: 10.1021/acs.chemrev.2c00773] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Indexed: 06/11/2023]
Abstract
In response to the current trend of miniaturization of electronic devices and sensors, the complementary coupling of high-efficiency energy conversion and low-loss energy storage technologies has given rise to the development of photocapacitors (PCs), which combine energy conversion and storage in a single device. Photovoltaic systems integrated with supercapacitors offer unique light conversion and storage capabilities, resulting in improved overall efficiency over the past decade. Consequently, researchers have explored a wide range of device combinations, materials, and characterization techniques. This review provides a comprehensive overview of photocapacitors, including their configurations, operating mechanisms, manufacturing techniques, and materials, with a focus on emerging applications in small wireless devices, Internet of Things (IoT), and Internet of Everything (IoE). Furthermore, we highlight the importance of cutting-edge materials such as metal-organic frameworks (MOFs) and organic materials for supercapacitors, as well as novel materials in photovoltaics, in advancing PCs for a carbon-free, sustainable society. We also evaluate the potential development, prospects, and application scenarios of this emerging area of research.
Collapse
Affiliation(s)
- Natalie Flores-Diaz
- School
of Natural and Environmental Science, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Francesca De Rossi
- CHOSE
(Centre for Hybrid and Organic Solar Energy), Department of Electronic
Engineering, University of Rome “Tor
Vergata”, via
del Politecnico 1, 00133 Rome, Italy
| | - Aparajita Das
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Kandi, 502285 Sangareddy, Telangana, India
| | - Melepurath Deepa
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Kandi, 502285 Sangareddy, Telangana, India
| | - Francesca Brunetti
- CHOSE
(Centre for Hybrid and Organic Solar Energy), Department of Electronic
Engineering, University of Rome “Tor
Vergata”, via
del Politecnico 1, 00133 Rome, Italy
| | - Marina Freitag
- School
of Natural and Environmental Science, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
A High-Temperature High-Pressure Supercapacitor based on Ionic Liquids for harsh environment applications. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
4
|
Portillo-Cortez K, Martínez A, Bizarro M, García-Sánchez MF, Güell F, Dutt A, Santana G. ZnO Nanowires/N719 Dye With Different Aspect Ratio as a Possible Photoelectrode for Dye-Sensitized Solar Cells. Front Chem 2021; 8:604092. [PMID: 33604326 PMCID: PMC7884346 DOI: 10.3389/fchem.2020.604092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
The vapor-liquid-solid (VLS) process was applied to fabricate zinc oxide nanowires (ZnO NWs) with a different aspect ratio (AR), morphological, and optical properties. The ZnO NWs were grown on a system that contains a quartz substrate with transparent conductive oxide (TCO) thin film followed by an Al-doped ZnO (AZO) seed layer; both films were grown by magnetron sputtering at room temperature. It was found that the ZnO NWs presented high crystalline quality and vertical orientation from different structural and morphological characterizations. Also, NWs showed a good density distribution of 69 NWs/μm2 with a different AR that offers their capability to be used as possible photoelectrode (anode) in potential future device applications. The samples optical properties were studied using various techniques such as photoluminescence (PL), absorption, and transmittance before and after sensitization with N719 dye. The results demonstrated that NW with 30 nm diameter had the best characteristics as feasible photoelectrode (anode) (high absorption, minimum recombination, high crystallinity). Also, the present samples optical properties were found to be improved due to the existence of N719 dye and Au nanoparticles on the tip of NWs. NWs grown in this work can be used in different photonic and optoelectronic applications.
Collapse
Affiliation(s)
- Karina Portillo-Cortez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Martínez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Monserrat Bizarro
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mario F García-Sánchez
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Frank Güell
- ENFOCAT-IN2UB, Universitat de Barcelona, Barcelona, Spain
| | - Ateet Dutt
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo Santana
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
5
|
Effect of polyaniline (PANI) on efficiency enhancement of dye-sensitized solar cells fabricated with poly(ethylene oxide)-based gel polymer electrolytes. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04841-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Eshetu GG, Figgemeier E. Confronting the Challenges of Next-Generation Silicon Anode-Based Lithium-Ion Batteries: Role of Designer Electrolyte Additives and Polymeric Binders. CHEMSUSCHEM 2019; 12:2515-2539. [PMID: 30845373 DOI: 10.1002/cssc.201900209] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Silicon has emerged as the next-generation anode material for high-capacity lithium-ion batteries (LIBs). It is currently of scientific and practical interest to encounter increasingly growing demands for high energy/power density electrochemical energy-storage devices for use in electric vehicles (xEVs), renewable energy sources, and smart grid/utility applications. Improvements to existing conventional LIBs are required to provide higher energy, longer cycle lives. This is attributed to its unparalleled theoretical capacity (4200 mAh g-1 for Li4.4 Si), which is approximately 10 times higher than that of a state-of-the-art graphitic anode (372 mAh g-1 for LiC6 ), with a suitable operating voltage, natural abundance, environmental benignity, nontoxicity, high safety, and so forth. However, despite the overwhelming beneficial features, the practical integration of LIBs containing a silicon anode beyond the commercial niche is hampered by unavoidable challenges, such as excessive volume changes during the (de-)alloying process, inherently low electrical and ionic conductivities, an unstable solid-electrolyte interphase, and electrolyte drying out. Among various extenuating strategies, non-electrode factors encompassing electrolyte additives and polymeric binders are regarded as the most economical, and effective approaches towards circumventing these disadvantages are in short supply. With the aim of providing an in-depth insight into rapidly growing accounts of electrolyte additives and binders for use with silicon anode-based LIBs, this Review assesses the current state of the art of research and thereby examines opportunities to open up new avenues for the practical realization of these silicon anode-based LIBs.
Collapse
Affiliation(s)
- Gebrekidan Gebresilassie Eshetu
- Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Jägerstraße 17/19, 52066, Aachen, Germany
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
| | - Egbert Figgemeier
- Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Jägerstraße 17/19, 52066, Aachen, Germany
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Münster (HI MS), Corrensstr. 46, 48148, Münster, Germany
| |
Collapse
|