1
|
Yin F, Wang H, Zhao Z, Luo L, Tang Y, Zhang Y, Xue Q. Doping and strain modulation of the electronic, optical and photocatalytic properties of the GaN/C 2N heterostructure. Phys Chem Chem Phys 2024; 26:17223-17231. [PMID: 38855975 DOI: 10.1039/d4cp01836b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The electronic, optical and photocatalytic properties of GaN/C2N van der Waals heterostructures are investigated using the first-principles theory, and effective regulation through element doping or strain is achieved further. The results show that the GaN/C2N heterostructure exhibits a type-II band alignment with an indirect band gap of 2.25 eV, which benefits photocatalytic water splitting. In this study, both type-I and type-II band alignments can be obtained through doping or strain modulation. Doping with P or As atoms reduces the band gap of the GaN/C2N heterostructure and transforms it to a type-I direct bandgap semiconductor, which makes the doped GaN/C2N heterostructure more suitable for optoelectronic devices. In addition, the GaN/C2N heterostructure retains type-II band alignment and has a decreased band gap under tensile strain (0 to +4%), which is more favorable for photocatalytic water splitting. Compressive strain (0 to -4%) converts the type-II band alignment to type-I, resulting in a wider light absorption range, making the GaN/C2N heterostructure more suitable for optoelectronic devices. These theoretical results are helpful for the design of GaN/C2N vdW heterostructures in the fields of optoelectronic devices and photocatalysts.
Collapse
Affiliation(s)
- Fu Yin
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Hui Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Zhengqin Zhao
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - LiJia Luo
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Yongliang Tang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Yanbo Zhang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Qiang Xue
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
2
|
Kalidasan K, Mallapur S, Munirathnam K, Nagarajaiah H, Reddy MBM, Kakarla RR, Raghu AV. Transition metals-doped g-C 3N 4 nanostructures as advanced photocatalysts for energy and environmental applications. CHEMOSPHERE 2024; 352:141354. [PMID: 38311034 DOI: 10.1016/j.chemosphere.2024.141354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/07/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
Graphitic carbon nitride (g-C3N4)-based heterostructured photocatalysts have received significant attention for its potential applications in the treatment of wastewater and hydrogen evolution. The utilization of semiconductor materials in heterogeneous photocatalysis has recently received great attention due to their potential and eco-friendly properties. Doping with metal ions plays a crucial role in altering the photochemical characteristics of g-C3N4, effectively enhancing photoabsorption into the visible range and thus improving the photocatalytic performance of doped photocatalysts. As an emerging nanomaterial, nanostructured g-C3N4 represents a visible light-active semiconducting photocatalyst that has attracted significant interest in the photocatalysis field, particularly for its practical water treatment applications. To the best of our knowledge, investigations of functionalized photocatalytic (PC) materials on 3d transition metal-doped g-C3N4 remain unexplored in the existing literature. g-C3N4 based heterohybrid photocatalysts have demonstrated excellent reusability, making them highly promising for wastewater treatment applications. This paper describes the overview of numerous studies conducted on the heterostructured g-C3N4 photocatalysts with various 3d metals. Research studies have revealed that the introduction of element doping with various 3d transition metals (e.g., Ti, Mn, Fe, Co, Ni, Cu, Zn, etc.) into g-C3N4 is an efficient approach to enhance degradation efficacy and boost photocatalytic activity (PCA) of doped g-C3N4 catalysts. Moreover, the significance of g-C3N4 heterostructured nanohybrids is highlighted, particularly in the context of wastewater treatment applications. The study concludes by providing insights into future perspectives in this developing area of research, with a specific focus on the degradation of various organic contaminants.
Collapse
Affiliation(s)
- Kavya Kalidasan
- Department of Chemistry, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, 560064, India
| | - Srinivas Mallapur
- Department of Chemistry, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, 560064, India.
| | - K Munirathnam
- Department of Physics, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, 560064, India
| | - H Nagarajaiah
- Department of Chemistry, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, 560064, India
| | - M B Madhusudana Reddy
- Department of Chemistry, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, 560064, India
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Anjanapura V Raghu
- Faculty of Allied Health Sciences, BLDE (Deemed-to-be University), Vijayapura, 586103, Karnataka, India.
| |
Collapse
|
3
|
Ali B, Siddique SA, Ahmed Siddique MB, Ullah S, Ali MA, Rauf A, Kamran MA, Arshad M. Insight on the structural, electronic and optical properties of Zn, Ga-doped/dual-doped graphitic carbon nitride for visible-light applications. J Mol Graph Model 2023; 125:108603. [PMID: 37633020 DOI: 10.1016/j.jmgm.2023.108603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
The density functional theory (DFT) was applied for the first time to study the doping and co-doping of Ga and Zn metals on graphitic carbon nitride (g-C3N4). The doping of these metal impurities into g-C3N4 leads to a significant decrease in the bandgap energy. Moreover, the co-doping leads to even lower bandgap energy than either individual Zn or Ga-doped g-C3N4. The theoretical electronic and optical properties including the density of state (DOS), energy levels of the frontier orbital, excited state lifetime, and molecular electrostatic potential of the doped and co-doped g-C3N4 support their application in UV-visible light-based technologies. The quantum mechanical parameters (energy band gap, binding energy, exciton energy, softness, hardness) and dipole moment exhibit higher values (ranging from 1.36 to 4.94 D) compared to the bare g-C3N4 (0.29 D), indicating better solubility in the water solvent. The time-dependent DFT (TD-DFT) calculations showed absorption maxima in between the UV-Vis region (309-878 nm). Additionally, charge transfer characteristics, transition density matrix (TDM), excited state lifetime and light harvesting efficiency (LHE) were investigated. Overall, these theoretical studies suggest that doped and co-doped g-C3N4 are excellent candidates for electronic semiconductor devices, light-emitting diodes (LEDs), solar cells, and photodetectors.
Collapse
Affiliation(s)
- Babar Ali
- Department of Physics, University of Okara, Okara, Pakistan
| | - Sabir Ali Siddique
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan
| | | | - Sami Ullah
- Department of Physics, University of Okara, Okara, Pakistan
| | - Muhammad Arif Ali
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan
| | | | - Muhammad Arshad
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
4
|
Riaz A, Tahir MB, ur Rehman J, Sagir M, Yousef ES, Alrobei H, Alzaid M. Tailoring 2D carbides and nitrides based photo-catalytic nanomaterials for energy production and storage: a review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
2D carbides and nitrides-based nanomaterials because of their unusual physical and chemical properties and a vast range of energy-storage applications have attracted tremendous attention. However, 2D carbides and nitrides-based nanomaterials and their corresponding composites have many intrinsic constraints in terms of energy-storage applications. The nano-engineering of these 2D materials is widely investigated, to improve their performance for practical application. In this Review article, the current progress and research on 2D carbides and nitrides-based nanostructures are presented and debated, concentrating on their methods of preparation, and energy conservation applications for example Lithium-ion-battery, supercapacitors, and Sodium-ion-battery. In conclusion, the problems, and recommendations essential to be discussed for the progress of these 2D nanomaterials for energy-storage applications based on carbides and nitrides are displayed.
Collapse
Affiliation(s)
- Asma Riaz
- Institute of Physics, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - Muhammad Bilal Tahir
- Institute of Physics, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
- Center for Innovative Material Research , Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - Jalil ur Rehman
- Institute of Physics, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - Muhammad Sagir
- Institute of Chemical Engineering, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - El Sayed Yousef
- Research Center for Advanced Materials Science (RCAMS) , King Khalid University , Abha 61413, P. O. Box 9004 , Saudi Arabia
- Physics Dep., Faculty of Science , King Khalid University , P. O. Box 9004 , Abha , Saudi Arabia
| | - Hussein Alrobei
- Department of Mechanical Engineering, College of Engineering , Prince Sattam Bin Abdulaziz University , Al Kharj , Saudi Arabia
| | - Meshal Alzaid
- Physics Department, College of Science , Jouf University , P.O. Box: 2014 , Sakaka , Saudi Arabia
| |
Collapse
|
5
|
Pourmadadi M, Rahmani E, Eshaghi MM, Shamsabadipour A, Ghotekar S, Rahdar A, Romanholo Ferreira LF. Graphitic carbon nitride (g-C3N4) as a new carrier for drug delivery applications: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Hong T, Anwer S, Wu J, Deng C, Qian H. Semiconductor-metal-semiconductor TiO2@Au/g-C3N4 interfacial heterojunction for high performance Z-scheme photocatalyst. Front Chem 2022; 10:1050046. [DOI: 10.3389/fchem.2022.1050046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
We designed an edge-sites 2D/0D/2D based TiO2@Au/g-C3N4 Z-scheme photocatalytic system consists of highly exposed (001) TNSs@Au edge-site heterojunction, and the Au/g-C3N4 interfacial heterojunction. The designed photocatalyst was prepared by a facile and controlled hydrothermal synthesis strategy via in-situ nanoclusters-to-nanoparticles deposition technique and programable calcination in N2 atmosphere to get edge-site well-crystalline interface, followed by chemically bonded thin overlay of g-C3N4. Photocatalytic performance of the prepared TNSs@Au/g-C3N4 catalyst was evaluated by the photocatalytic degradation of organic pollutants in water under visible light irradiation. The results obtained from structural and chemical characterization conclude that the inter-facet junction between highly exposed (001) and (101) TNSs surface, and TNSs@Au interfacial heterojunction formed by a direct contact between highly crystalline TNSs and Au, are the key factors to enhance the separation efficiency of photogenerated electrons/holes. On coupling with overlay of g-C3N4 2D NSs synergistically offer tremendous reactive sites for the potential photocatalytic dye degradation in the Z-scheme photocatalyst. Particularly in the designed photocatalyst, Au nanoparticles accumulates and transfer the photo-stimulated electrons originated from anatase TNSs to g-C3N4via semiconductor-metal heterojunction. Because of the large exposed reactive 2D surface, overlay g-C3N4 sheets not only trap photoelectrons, but also provide a potential platform for increased adsorption capacities for organic contaminants. This work establishes a foundation for the development of high-performance Z-scheme photocatalytic systems.
Collapse
|
7
|
Roy R, Chacko AR, Abraham T, Korah BK, John BK, Punnoose MS, Mohan C, Mathew B. Recent Advances in Graphitic Carbon Nitrides (g‐C
3
N
4
) as Photoluminescence Sensing Probe: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Richa Roy
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Anu Rose Chacko
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | | | - Binila K Korah
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Bony K John
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Mamatha Susan Punnoose
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Chitra Mohan
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Beena Mathew
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| |
Collapse
|
8
|
Shakiba M, Stippell E, Li W, Akimov AV. Nonadiabatic Molecular Dynamics with Extended Density Functional Tight-Binding: Application to Nanocrystals and Periodic Solids. J Chem Theory Comput 2022; 18:5157-5180. [PMID: 35758936 DOI: 10.1021/acs.jctc.2c00297] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we report a new methodology for nonadiabatic molecular dynamics calculations within the extended tight-binding (xTB) framework. We demonstrate the applicability of the developed approach to finite and periodic systems with thousands of atoms by modeling "hot" electron relaxation dynamics in silicon nanocrystals and electron-hole recombination in both a graphitic carbon nitride monolayer and a titanium-based metal-organic framework (MOF). This work reports the nonadiabatic dynamic simulations in the largest Si nanocrystals studied so far by the xTB framework, with diameters up to 3.5 nm. For silicon nanocrystals, we find a non-monotonic dependence of "hot" electron relaxation rates on the nanocrystal size, in agreement with available experimental reports. We rationalize this relationship by a combination of decreasing nonadiabatic couplings related to system size and the increase of available coherent transfer pathways in systems with higher densities of states. We emphasize the importance of proper treatment of coherences for obtaining such non-monotonic dependences. We characterize the electron-hole recombination dynamics in the graphitic carbon nitride monolayer and the Ti-containing MOF. We demonstrate the importance of spin-adaptation and proper sampling of surface hopping trajectories in modeling such processes. We also assess several trajectory surface hopping schemes and highlight their distinct qualitative behavior in modeling the excited-state dynamics in superexchange-like models depending on how they handle coherences between nearly parallel states.
Collapse
Affiliation(s)
- Mohammad Shakiba
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Elizabeth Stippell
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
9
|
Schukraft GM, Moss B, Kafizas AG, Petit C. Effect of Band Bending in Photoactive MOF-Based Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19342-19352. [PMID: 35442614 PMCID: PMC9073837 DOI: 10.1021/acsami.2c00335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 06/01/2023]
Abstract
Semiconductor/metal-organic framework (MOF) heterojunctions have demonstrated promising performance for the photoconversion of CO2 into value-added chemicals. To further improve performance, we must understand better the factors which govern charge transfer across the heterojunction interface. However, the effects of interfacial electric fields, which can drive or hinder electron flow, are not commonly investigated in MOF-based heterojunctions. In this study, we highlight the importance of interfacial band bending using two carbon nitride/MOF heterojunctions with either Co-ZIF-L or Ti-MIL-125-NH2. Direct measurement of the electronic structures using X-ray photoelectron spectroscopy (XPS), work function, valence band, and band gap measurements led to the construction of a simple band model at the heterojunction interface. This model, based on the heterojunction components and band bending, enabled us to rationalize the photocatalytic enhancements and losses observed in MOF-based heterojunctions. Using the insight gained from a promising band bending diagram, we developed a Type II carbon nitride/MOF heterojunction with a 2-fold enhanced CO2 photoreduction activity compared to the physical mixture.
Collapse
Affiliation(s)
- Giulia
E. M. Schukraft
- Barrer
Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K.
- Department
of Materials, South Kensington Campus, Imperial
College London, London SW7 2AZ, U.K.
| | - Benjamin Moss
- Department
of Chemistry, Molecular Science Research Hub, White City Campus, Imperial College London, London W12 0BZ, U.K.
| | - Andreas G. Kafizas
- Department
of Chemistry, Molecular Science Research Hub, White City Campus, Imperial College London, London W12 0BZ, U.K.
- The
Grantham Institute, Imperial College London, London SW7 2AZ, U.K.
| | - Camille Petit
- Barrer
Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
10
|
Viswanathan VP, Nayarassery AN, Xavier MM, Mathew S. A 2D/1D heterojunction nanocomposite built from polymeric carbon nitride and MIL-88A(Fe) derived α-Fe 2O 3 for enhanced photocatalytic degradation of rhodamine B. NEW J CHEM 2022. [DOI: 10.1039/d1nj05439b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D/1D heterojunction α-Fe2O3/C3N4 photocatalysts containing α-Fe2O3 microrods and polymeric carbon nitride flakes are synthesised through the calcination of Fe-based metal-organic frameworks and boost the visible light photocatalytic degradation of rhodamine B.
Collapse
Affiliation(s)
| | - Adarsh N. Nayarassery
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, 13699, USA
| | - Marilyn Mary Xavier
- Department of Chemistry, Morning Star Home Science College, Angamaly South, 683573, Kerala, India
| | - Suresh Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| |
Collapse
|
11
|
Boron compounds for catalytic applications. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Stroyuk O, Raievska O, Zahn DRT. Single-layer carbon nitride: synthesis, structure, photophysical/photochemical properties, and applications. Phys Chem Chem Phys 2021; 23:20745-20764. [PMID: 34542127 DOI: 10.1039/d1cp03457j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Perspective provides a critical summary of the current state of the art in the synthesis and properties of polyheptazine single-layer carbon nitride (SLCN). The summary combines the authors' research and literature reports on SLCN concerning the synthesis of single-layer polyheptazine sheets, light absorption and emission by SLCN, photochemical and photocatalytic properties of SLCN as well as examples of applications of SLCN sheets as "building blocks" in heterostructures with nanocrystalline semiconductors and metals. The Perspective is concluded with an outlook discussing the most promising directions for further studies and applications of SLCN and related composites.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), Immerwahrstr. 2, 91058 Erlangen, Germany.
| | - Oleksandra Raievska
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany. .,Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany. .,Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| |
Collapse
|
13
|
Zhang JR, Kan YS, Gu LL, Wang CY, Zhang Y. Graphite Carbon Nitride and Its Composites for Medicine and Health Applications. Chem Asian J 2021; 16:2003-2013. [PMID: 34121348 DOI: 10.1002/asia.202100499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/08/2021] [Indexed: 12/28/2022]
Abstract
With the progress of science and technology and the improvement of people's living standards, the performance of traditional materials can no longer fully meet the needs of social development. Graphitic phase carbon nitride (g-C3 N4 ), as a new type of nanomaterial, has good properties. Its unique graphite like structure and stable thermodynamic characteristics have led an increasing number of researchers to explore its diverse functions and use this as a basis to develop related energy and products for applications in various fields. Among them, applications in the field of medicine health have become popular in recent years. Therefore, this review summarizes the synthesis methods of g-C3 N4 and its composites, as well as their applications in food, medicine, environmental monitoring and disease treatment, in the hope of providing references and basis for further expanding the applications of g-C3 N4 in large health areas.
Collapse
Affiliation(s)
- Jie-Ran Zhang
- The College of Nursing, Yangzhou University, 136 Jiang-Yang-Zhong Road, Yangzhou, 225002, P. R. China
| | - Yin-Shi Kan
- The College of Nursing, Yangzhou University, 136 Jiang-Yang-Zhong Road, Yangzhou, 225002, P. R. China
| | - Ling-Ling Gu
- The College of Nursing, Yangzhou University, 136 Jiang-Yang-Zhong Road, Yangzhou, 225002, P. R. China
| | - Cheng-Yin Wang
- The College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, P. R. China
| | - Yu Zhang
- The College of Nursing, Yangzhou University, 136 Jiang-Yang-Zhong Road, Yangzhou, 225002, P. R. China
| |
Collapse
|
14
|
|
15
|
Highly sensitive electrochemical sensor based on carbon-rich graphitic carbon nitride as an electrocatalyst for the detection of diphenylamine. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Agrawal S, Lin W, Prezhdo OV, Trivedi DJ. Ab initio quantum dynamics of charge carriers in graphitic carbon nitride nanosheets. J Chem Phys 2020; 153:054701. [PMID: 32770911 DOI: 10.1063/5.0010628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Graphitic carbon nitride (g-C3N4), a metal-free and visible light responsive photocatalyst, has garnered much attention due to its wide range of applications. In order to elucidate the role of dimensionality on the properties of photo-generated charge carriers, we apply nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory to investigate nonradiative relaxation of hot electrons and holes, and electron-hole recombination in monolayer and bulk g-C3N4. The nonradiative charge recombination occurs on a nanosecond timescale and is faster in bulk than the nanosheet, in agreement with the experiment. The difference arises due to the smaller energy gap and participation of additional vibrations in the bulk system. The long carrier lifetimes are favored by small NA coupling and rapid phonon-induced loss of quantum coherence between the excited and ground electronic states. Decoherence is fast because g-C3N4 is soft and undergoes large scale vibrations. The NA coupling is small since electrons and holes are localized on different atoms, and the electron-hole overlap is relatively small. Phonon-driven relaxation of hot electrons and holes takes 100-200 fs and is slightly slower at higher initial energies due to participation of fewer vibrational modes. This feature of two-dimensional g-C3N4 contrasts traditional three-dimensional semiconductors, which exhibit faster relaxation at higher energies due to larger density of states, and can be used to extract hot carriers to perform useful functions. The ab initio quantum dynamics simulations present a comprehensive picture of the photo-induced charge carrier dynamics in g-C3N4, guiding design of photovoltaic and photocatalytic devices.
Collapse
Affiliation(s)
- Sraddha Agrawal
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, USA
| |
Collapse
|
17
|
Yu HY, Li HJ, Ma YY, Feng YX, Qian DJ. Interfacial self-assembly of carbon nitride-based nanocomposites with zinc terpyridyl coordination polymers for photocurrent generation and the photocatalytic degradation of organic dyes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|