1
|
Wang X, Huo Z, Xie X, Shanaiah N, Tong R. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures. Chem Asian J 2023; 18:e202201147. [PMID: 36571563 DOI: 10.1002/asia.202201147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Transforming renewable resources into functional and degradable polymers is driven by the ever-increasing demand to replace unsustainable polyolefins. However, the utility of many degradable homopolymers remains limited due to their inferior properties compared to commodity polyolefins. Therefore, the synthesis of sequence-defined copolymers from one-pot monomer mixtures is not only conceptually appealing in chemistry, but also economically attractive by maximizing materials usage and improving polymers' performances. Among many polymerization strategies, ring-opening (co)polymerization of cyclic monomers enables efficient access to degradable polymers with high control on molecular weights and molecular weight distributions. Herein, we highlight recent advances in achieving one-pot, sequence-controlled polymerizations of cyclic monomer mixtures using a single catalytic system that combines multiple catalytic cycles. The scopes of cyclic monomers, catalysts, and polymerization mechanisms are presented for this type of sequence-controlled ring-opening copolymerization.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Narasimhamurthy Shanaiah
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Drive, 24061, Blacksburg, VA, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| |
Collapse
|
2
|
Dreyer R, Pfukwa R, Barth S, Hunter R, Klumperman B. The Evolution of SNAP-Tag Labels. Biomacromolecules 2023; 24:517-530. [PMID: 36607253 DOI: 10.1021/acs.biomac.2c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The conjugation of proteins with synthetic molecules can be conducted in many different ways. In this Perspective, we focus on tag-based techniques and specifically on the SNAP-tag technology. The SNAP-tag technology makes use of a fusion protein between a protein of interest and an enzyme tag that enables the actual conjugation reaction. The SNAP-tag is based on the O6-alkylguanine-DNA alkyltransferase (AGT) enzyme and is optimized to react selectively with O6-benzylguanine (BG) substrates. BG-containing dye derivatives have frequently been used to introduce a fluorescent tag to a specific protein. We believe that the site-specific conjugation of polymers to proteins can significantly benefit from the SNAP-tag technology. Especially, polymers synthesized via reversible deactivation radical polymerization allow for the facile introduction of a BG end group to enable SNAP-tag conjugation.
Collapse
Affiliation(s)
- Rudolf Dreyer
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa
| | - Rueben Pfukwa
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7935, South Africa.,South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7935, South Africa
| | - Roger Hunter
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa
| | - Bert Klumperman
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
3
|
Huang Y, Hu C, Zhou Y, Duan R, Sun Z, Wan P, Xiao C, Pang X, Chen X. Monomer Controlled Switchable Copolymerization: A Feasible Route for the Functionalization of Poly(lactide). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuezhou Huang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Pengqi Wan
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
4
|
Huang Y, Hu C, Zhou Y, Duan R, Sun Z, Wan P, Xiao C, Pang X, Chen X. Monomer Controlled Switchable Copolymerization: A Feasible Route for the Functionalization of Poly(lactide). Angew Chem Int Ed Engl 2021; 60:9274-9278. [PMID: 33580552 DOI: 10.1002/anie.202017088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 11/06/2022]
Abstract
Switchable polymerization is an attractive strategy to enable the sequential selectivity of multi-block polyesters. Besides, these well-defined multi-block polyesters could enable further modification for wider applications. Herein, based on the reversible insertion of CO2 by Salen-MnIII , a new monomer controlled self-switchable polymerization route was developed. Chemoselective ring opening copolymerization of O-carboxyanhydrides (OCAs) and lactide (LA) was explored without cocatalyst. The sequential conversion of OCAs and LA into the polymer chain could form multi-block polyesters. Based on this strategy, a series of multi-block polyesters with different pendant groups were synthesized. Furthermore, by modifying the propargyl-containing copolymers with quaternary ammonium groups, we have realized antibacterial functionalization of PLA. These results imply the potential application of this strategy for the fabrication of functional polymers for biomedical applications.
Collapse
Affiliation(s)
- Yuezhou Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Pengqi Wan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
5
|
Li M, Zhang S, Zhang X, Wang Y, Chen J, Tao Y, Wang X. Unimolecular Anion‐Binding Catalysts for Selective Ring‐Opening Polymerization of
O
‐carboxyanhydrides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shuai Zhang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jinlong Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
6
|
Li M, Zhang S, Zhang X, Wang Y, Chen J, Tao Y, Wang X. Unimolecular Anion‐Binding Catalysts for Selective Ring‐Opening Polymerization of
O
‐carboxyanhydrides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/anie.202011352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shuai Zhang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jinlong Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
7
|
Zhong Y, Feng Q, Wang X, Yang L, Korovich AG, Madsen LA, Tong R. Photocatalyst-independent photoredox ring-opening polymerization of O-carboxyanhydrides: stereocontrol and mechanism. Chem Sci 2021; 12:3702-3712. [PMID: 34163644 PMCID: PMC8179436 DOI: 10.1039/d0sc05550f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
Photoredox ring-opening polymerization of O-carboxyanhydrides allows for the synthesis of polyesters with precisely controlled molecular weights, molecular weight distributions, and tacticities. While powerful, obviating the use of precious metal-based photocatalysts would be attractive from the perspective of simplifying the protocol. Herein, we report the Co and Zn catalysts that are activated by external light to mediate efficient ring-opening polymerization of O-carboxyanhydrides, without the use of exogenous precious metal-based photocatalysts. Our methods allow for the synthesis of isotactic polyesters with high molecular weights (>200 kDa) and narrow molecular weight distributions (M w/M n < 1.1). Mechanistic studies indicate that light activates the oxidative status of a CoIII intermediate that is generated from the regioselective ring-opening of the O-carboxyanhydride. We also demonstrate that the use of Zn or Hf complexes together with Co can allow for stereoselective photoredox ring-opening polymerizations of multiple racemic O-carboxyanhydrides to synthesize syndiotactic and stereoblock copolymers, which vary widely in their glass transition temperatures.
Collapse
Affiliation(s)
- Yongliang Zhong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University 635 Prices Fork Road, Blacksburg Virginia 24061 USA
| | - Quanyou Feng
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University 635 Prices Fork Road, Blacksburg Virginia 24061 USA
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University 635 Prices Fork Road, Blacksburg Virginia 24061 USA
| | - Lei Yang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Andrew G Korovich
- Department of Chemistry, Virginia Polytechnic Institute and State University 1040 Drillfield Drive, Blacksburg Virginia 24061 USA
| | - Louis A Madsen
- Department of Chemistry, Virginia Polytechnic Institute and State University 1040 Drillfield Drive, Blacksburg Virginia 24061 USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University 635 Prices Fork Road, Blacksburg Virginia 24061 USA
| |
Collapse
|
8
|
Wang J, Tao Y. Synthesis of Sustainable Polyesters via Organocatalytic Ring-Opening Polymerization of O-carboxyanhydrides: Advances and Perspectives. Macromol Rapid Commun 2020; 42:e2000535. [PMID: 33241601 DOI: 10.1002/marc.202000535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/26/2020] [Indexed: 11/06/2022]
Abstract
Sustainable polyesters can be furnished via ring-opening polymerization (ROP) of O-carboxyanhydrides (OCAs). Various catalysts, especially metal-based catalysts, are devised to achieve controlled ROP of OCAs. In the following mini review, the recent progress on the organocatalytic ROP of OCAs, including the usage of thiourea-based bifunctional single-molecule organocatalysts for eliminating epimerization in OCAs polymerization is summarized. Moreover, the future development of the organocatalytic ROP of OCAs for the synthesis of sustainable polyesters will be discussed.
Collapse
Affiliation(s)
- Jianqun Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
9
|
Jiang J, Cui Y, Lu Y, Zhang B, Pan X, Wu J. Weak Lewis Pairs as Catalysts for Highly Isoselective Ring-Opening Polymerization of Epimerically Labile rac-O-Carboxyanhydride of Mandelic Acid. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinxing Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yaqin Cui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yaguang Lu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Bin Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
10
|
Li H, Shakaroun RM, Guillaume SM, Carpentier J. Recent Advances in Metal‐Mediated Stereoselective Ring‐Opening Polymerization of Functional Cyclic Esters towards Well‐Defined Poly(hydroxy acid)s: From Stereoselectivity to Sequence‐Control. Chemistry 2019; 26:128-138. [DOI: 10.1002/chem.201904108] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Hui Li
- Institut des Sciences Chimiques de Rennes, UMR 6226 Univ. Rennes, CNRS 35042 Rennes France
| | - Rama M. Shakaroun
- Institut des Sciences Chimiques de Rennes, UMR 6226 Univ. Rennes, CNRS 35042 Rennes France
| | - Sophie M. Guillaume
- Institut des Sciences Chimiques de Rennes, UMR 6226 Univ. Rennes, CNRS 35042 Rennes France
| | | |
Collapse
|
11
|
Affiliation(s)
- Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael G. Hyatt
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Susannah A. Miller
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Vagenende M, Graulus GJ, Delaey J, Van Hoorick J, Berghmans F, Thienpont H, Van Vlierberghe S, Dubruel P. Amorphous random copolymers of lacOCA and manOCA for the design of biodegradable polyesters with tuneable properties. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Abtew E, Ezra AF, Basu A, Domb AJ. Biodegradable Poly(Acetonide Gluconic Acid) for Controlled Drug Delivery. Biomacromolecules 2019; 20:2934-2941. [PMID: 31259534 DOI: 10.1021/acs.biomac.9b00461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here on the synthesis, characterization, degradation, and drug release of acetal-protected gluconic acid-based poly(α-hydroxy ester). This polyester was synthesized by ring-opening polymerization of O-carboxyanhydride of acetal-protected gluconic acid. The polymer undergoes hydrolytic degradation under mild acidic media, whereas minimal degradation takes place under physiological pH. Under acidic conditions, the acetal-protecting groups are hydrolyzed, resulting in a water-soluble polyester with saccharide side chains that erodes from the surface, leaving the bulk of the polymer matrix intact. At pH 3.5, zero-order kinetics was maintained for 50 days accounting for ∼75% drug release. These biodegradable, pH-responsive, sustained zero-order release kinetics of the polymer have application as drug carriers for oral drug delivery or medical implants or also for nonmedical applications.
Collapse
Affiliation(s)
- Ester Abtew
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine , The Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| | - Aviva F Ezra
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine , The Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| | - Arijit Basu
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine , The Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine , The Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| |
Collapse
|