1
|
Dalui A, Ariga K, Acharya S. Colloidal semiconductor nanocrystals: from bottom-up nanoarchitectonics to energy harvesting applications. Chem Commun (Camb) 2023; 59:10835-10865. [PMID: 37608724 DOI: 10.1039/d3cc02605a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Colloidal semiconductor nanocrystals (NCs) have been extensively investigated owing to their unique properties induced by the quantum confinement effect. The advent of colloidal synthesis routes led to the design of stable colloidal NCs with uniform size, shape, and composition. Metal oxides, phosphides, and chalcogenides (ZnE, CdE, PbE, where E = S, Se, or Te) are few of the most important monocomponent semiconductor NCs, which show excellent optoelectronic properties. The ability to build quantum confined heterostructures comprising two or more semiconductor NCs offer greater customization and tunability of properties compared to their monocomponent counterparts. More recently, the halide perovskite NCs showed exceptional optoelectronic properties for energy generation and harvesting applications. Numerous applications including photovoltaic, photodetectors, light emitting devices, catalysis, photochemical devices, and solar driven fuel cells have demonstrated using these NCs in the recent past. Overall, semiconductor NCs prepared via the colloidal synthesis route offer immense potential to become an alternative to the presently available device applications. This feature article will explore the progress of NCs syntheses with outstanding potential to control the shape and spatial dimensionality required for photovoltaic, light emitting diode, and photocatalytic applications. We also attempt to address the challenges associated with achieving high efficiency devices with the NCs and possible solutions including interface engineering, packing control, encapsulation chemistry, and device architecture engineering.
Collapse
Affiliation(s)
- Amit Dalui
- Department of Chemistry, Jogamaya Devi College, Kolkata-700026, India
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo Kashiwa, Chiba 277-8561, Japan
- International Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Somobrata Acharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| |
Collapse
|
2
|
Abstract
Inorganic semiconductors usually show n-type characterization; the development of p-type inorganic semiconductor material will provide more opportunities for novel devices. In this paper, we investigated the chemical vapor deposition (CVD) of p-type cuprous phosphide (Cu3P) nanofilm and studied its thermal oxidation behavior. Cu3P film was characterized by optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), laser Raman spectroscopy (Raman), and fluorescence spectroscopy (PL). We found that the thickness of film ranged from 4 to 10 nm, and the film is unstable at temperatures higher than room temperature in air. We provide a way to prepare inorganic phosphide nanofilms. In addition, the possible thermal oxidation should be taken into consideration for practical application.
Collapse
|
3
|
Memon AH, Wei B, Shams S, Jiang Y, Jiao M, Su M, Liang H. Construction of robust bienzyme-mimicking nanocatalysts for dye degradation by self-assembly of hematin, metal ions, and nucleotides. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growing proportion of the textile industry has led to an increase in the concentration of colored dyes in aquatic systems.
Collapse
Affiliation(s)
- Amjad Hussain Memon
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- Government Boys High School Manjhand, Education and Literary Department, Govt of Sindh, Pakistan
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Saira Shams
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yucui Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mengzhao Jiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mingming Su
- School of Environment and Natural Resources, Renmin University of China, Beijing, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
4
|
Medina-Gonzalez AM, Yox P, Chen Y, Adamson MAS, Svay M, Smith EA, Schaller RD, Rossini AJ, Vela J. Ternary ACd 4P 3 (A = Na, K) Nanostructures via a Hydride Solution-Phase Route. ACS MATERIALS AU 2021; 1:130-139. [PMID: 36855397 PMCID: PMC9888649 DOI: 10.1021/acsmaterialsau.1c00018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complex pnictides such as I-II4-V3 compounds (I = alkali metal; II = divalent transition metal; V = pnictide element) display rich structural chemistry and interesting optoelectronic properties, but can be challenging to synthesize using traditional high-temperature solid-state synthesis. Soft chemistry methods can offer control over particle size, morphology, and properties. However, the synthesis of multinary pnictides from solution remains underdeveloped. Here, we report the colloidal hot-injection synthesis of ACd4P3 (A = Na, K) nanostructures from their alkali metal hydrides (AH). Control studies indicate that NaCd4P3 forms from monometallic Cd0 seeds and not from binary Cd3P2 nanocrystals. IR and ssNMR spectroscopy reveal tri-n-octylphosphine oxide (TOPO) and related ligands are coordinated to the ternary surface. Computational studies show that competing phases with space group symmetries R3̅m and Cm differ by only 30 meV/formula unit, indicating that synthetic access to either of these polymorphs is possible. Our synthesis unlocks a new family of nanoscale multinary pnictide materials that could find use in optoelectronic and energy conversion devices.
Collapse
Affiliation(s)
| | - Philip Yox
- Department
of Chemistry Iowa State University, Ames, Iowa 50011, United States
| | - Yunhua Chen
- Department
of Chemistry Iowa State University, Ames, Iowa 50011, United States,Ames
Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | | | - Maranny Svay
- Department
of Chemistry Iowa State University, Ames, Iowa 50011, United States
| | - Emily A. Smith
- Department
of Chemistry Iowa State University, Ames, Iowa 50011, United States,Ames
Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Richard D. Schaller
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States,Center
for Nanoscale Materials, Argonne National
Laboratory, Lemont, Illinois 60439, United
States
| | - Aaron J. Rossini
- Department
of Chemistry Iowa State University, Ames, Iowa 50011, United States,Ames
Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Javier Vela
- Department
of Chemistry Iowa State University, Ames, Iowa 50011, United States,Ames
Laboratory, Iowa State University, Ames, Iowa 50011, United States,
| |
Collapse
|
5
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
6
|
Kulakovich O, Gurinovich L, Li H, Ramanenka A, Trotsiuk L, Muravitskaya A, Wei J, Li H, Matveevskaya N, Guzatov DV, Gaponenko S. Photostability enhancement of InP/ZnSe/ZnSeS/ZnS quantum dots by plasmonic nanostructures. NANOTECHNOLOGY 2021; 32:035204. [PMID: 33007765 DOI: 10.1088/1361-6528/abbdde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effect of gold and silver plasmonic films on the photoluminescence and photostability of InP/ZnSe/ZnSeS/ZnS nanocrystals (quantum dots) is reported. Colloidal gold films promote the photostability enhancement of InP/ZnSe/ZnSeS/ZnS quantum dots (more durable emission properties in the presence of metal nanostructures) through reducing exciton lifetime. In contrast, silver decreases the photostability of InP/ZnSe/ZnSeS/ZnS quantum dots without changing the photoluminescence intensity and kinetics. By adjusting the excitation wavelength closer to the extinction band of gold nanoparticles a 1.8-fold enhancement of luminescence intensity has been obtained using a polyelectrolyte spacer between the metal and InP/ZnSe/ZnSeS/ZnS nanoparticles. Thus, plasmonics offers essential practical improvement of light emitters in terms of their durable luminescent properties upon prolonged optical excitation without losses in luminescence efficiency or even along with increased efficiency.
Collapse
Affiliation(s)
- O Kulakovich
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - L Gurinovich
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - Hui Li
- Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 10008,1 People's Republic of China
| | - A Ramanenka
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - L Trotsiuk
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - A Muravitskaya
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| | - Jing Wei
- Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 10008,1 People's Republic of China
| | - Hongbo Li
- Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 10008,1 People's Republic of China
| | - N Matveevskaya
- Institute for Single Crystals, National Academy of Sciences of Ukraine, Nauky Ave., 60, Kharkiv 61178, Ukraine
| | - D V Guzatov
- Yanka Kupala State University of Grodno, Grodno 230023, Belarus
| | - S Gaponenko
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Nezavisimosti Ave, Minsk 220072, Belarus
| |
Collapse
|
7
|
Rodosthenous P, Gómez-Campos FM, Califano M. Tuning the Radiative Lifetime in InP Colloidal Quantum Dots by Controlling the Surface Stoichiometry. J Phys Chem Lett 2020; 11:10124-10130. [PMID: 33191752 DOI: 10.1021/acs.jpclett.0c02752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
InP nanocrystals exhibit a low photoluminescence quantum yield. As in the case of CdS, this is commonly attributed to their poor surface quality and difficult passivation, which give rise to trap states and negatively affect emission. Hence, the strategies adopted to improve their quantum yield have focused on the growth of shells, to improve passivation and get rid of the surface states. Here, we employ state-of-the-art atomistic semiempirical pseudopotential modeling to isolate the effect of surface stoichiometry from features due to the presence of surface trap states and show that, even with an atomistically perfect surface and an ideal passivation, InP nanostructures may still exhibit very long radiative lifetimes (on the order of tens of microseconds), broad and weak emission, and large Stokes' shifts. Furthermore, we find that all these quantities can be varied by orders of magnitude, by simply manipulating the surface composition, and, in particular, the number of surface P atoms. As a consequence it should be possible to substantially increase the quantum yield in these nanostructures by controlling their surface stoichiometry.
Collapse
Affiliation(s)
- Panagiotis Rodosthenous
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Francisco M Gómez-Campos
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- CITIC-UGR, C/Periodista Rafael Gómez Montero, n 2, Granada E-18071, Spain
| | - Marco Califano
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
8
|
Paredes IJ, Beck C, Lee S, Chen S, Khwaja M, Scimeca MR, Li S, Hwang S, Lian Z, McPeak KM, Shi SF, Sahu A. Synthesis of luminescent core/shell α-Zn 3P 2/ZnS quantum dots. NANOSCALE 2020; 12:20952-20964. [PMID: 33090173 DOI: 10.1039/d0nr06665f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal chalcogenide nanoparticles offer vast control over their optoelectronic properties via size, shape, composition, and morphology which has led to their use across fields including optoelectronics, energy storage, and catalysis. While cadmium and lead-based nanocrystals are prevalent in applications, concerns over their toxicity have motivated researchers to explore alternate classes of nanomaterials based on environmentally benign metals such as zinc and tin. The goal of this research is to identify material systems that offer comparable performance to existing metal chalcogenide systems from abundant, recyclable, and environmentally benign materials. With band gaps that span the visible through the infrared, II-V direct band gap semiconductors such as tetragonal zinc phosphide (α-Zn3P2) are promising candidates for optoelectronics. To date, syntheses of α-Zn3P2 nanoparticles have been hindered because of the toxicity of zinc and phosphorus precursors, surface oxidation, and defect states leading to carrier trapping and low photoluminescence quantum yield. This work reports a colloidal synthesis of quantum confined α-Zn3P2 nanoparticles from common phosphorus precursor tris(trimethylsilyl)phosphine and environmentally benign zinc carboxylates. Shelling of the nanoparticles with zinc sulfide is shown as a method of preventing oxidation and improving the optical properties of the nanoparticles. These results show a route to stabilizing α-Zn3P2 nanoparticles for optoelectronic device applications.
Collapse
Affiliation(s)
- Ingrid J Paredes
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| | - Clara Beck
- Optical Materials Engineering Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - Scott Lee
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| | - Shuzhen Chen
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| | - Mersal Khwaja
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| | - Michael R Scimeca
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| | - Shuang Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zhen Lian
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin M McPeak
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Su-Fei Shi
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ayaskanta Sahu
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201, USA.
| |
Collapse
|
9
|
Chandrasiri HB, Kim EB, Snee PT. Sterically Encumbered Tris(trialkylsilyl) Phosphine Precursors for Quantum Dot Synthesis. Inorg Chem 2020; 59:15928-15935. [PMID: 33040524 DOI: 10.1021/acs.inorgchem.0c02440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of nanomaterials with a narrow size distribution is challenging, especially for III-V semiconductor nanoparticles (also known as quantum dots). Concerning phosphides, this issue has been largely attributed the use of overly reactive precursors. The problem is exacerbated due to the narrow range of competent reagents for III-V semiconductor syntheses. We report the use of sterically encumbered tris(triethylsilyl) phosphine and tris(tributylsilyl) phosphine for InP quantum dot (QD) synthesis among others. The hypothesis was that these reagents are less reactive than the near-ubiquitous precursor tris(trimethylsilyl) phosphine and can be used to create more homogeneous materials. It was found that the InP products' quantum yields and emission color saturation (fwhm) were improved, but not to the levels realized in CdSe QDs. Regardless, these reagents have other positive attributes; they are less pyrophoric and can be applied toward the synthesis of II-V semiconductors and organophosphorus compounds. Concerning safe practices, we demonstrate that ammonium bifluoride is an effective replacement for highly toxic HF for the post-treatment of III-V semiconductor quantum dots.
Collapse
Affiliation(s)
- Hashini B Chandrasiri
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061 United States
| | - Eun Byoel Kim
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061 United States
| | - Preston T Snee
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061 United States
| |
Collapse
|
10
|
Do KH, Kumar DP, Rangappa AP, Hong Y, Reddy DA, Kim TK. Indium Phosphide Quantum Dots Integrated with Cadmium Sulfide Nanorods for Photocatalytic Carbon Dioxide Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Khai H. Do
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - D. Praveen Kumar
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - A. Putta Rangappa
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Yul Hong
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | | | - Tae Kyu Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
11
|
van IJzendoorn B, Mehta M. Frontiers in the solution-phase chemistry of homoatomic group 15 Zintl clusters. Dalton Trans 2020; 49:14758-14765. [DOI: 10.1039/d0dt02890h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent developments in the solution-phase chemistry of polypnictogen Zintl cluster are discussed, including the preparation of new clusters, wet synthetic methods, and their subsequent small molecule activations.
Collapse
Affiliation(s)
| | - Meera Mehta
- Department of Chemistry
- The University of Manchester
- Manchester
- UK
| |
Collapse
|