1
|
Jiang X, Shon K, Li X, Cui G, Wu Y, Wei Z, Wang A, Li X, Lu Y. Recent advances in identifying protein targets of bioactive natural products. Heliyon 2024; 10:e33917. [PMID: 39091937 PMCID: PMC11292521 DOI: 10.1016/j.heliyon.2024.e33917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
Background Natural products exhibit structural complexity, diversity, and historical therapeutic significance, boasting attractive functions and biological activities that have significantly influenced drug discovery endeavors. The identification of target proteins of active natural compounds is crucial for advancing novel drug innovation. Currently, methods for identifying targets of natural products can be categorized into labeling and label-free approaches based on whether the natural bioactive constituents are modified into active probes. In addition, there is a new avenue for rapidly exploring the targets of natural products based on their innate functions. Aim This review aimed to summarize recent advancements in both labeling and label-free approaches to the identification of targets for natural products, as well as the novel target identification method based on the natural functions of natural products. Methods We systematically collected relevant articles published in recent years from PubMed, Web of Science, and ScienceDirect, focusing on methods employed for identifying protein targets of bioactive natural products. Furthermore, we systematically summarized the principles, procedures, and successful cases, as well as the advantages and limitations of each method. Results Labeling methods allow for the direct labeling of target proteins and the exclusion of indirectly targeted proteins. However, these methods are not suitable for studying post-modified compounds with abolished activity, chemically challenging synthesis, or trace amounts of natural active compounds. Label-free methods can be employed to identify targets of any natural active compounds, including trace amounts and multicomponent mixtures, but their reliability is not as high as labeling methods. The structural complementarity between natural products and their innate receptors significantly increase the opportunities for finding more promising structural analogues of the natural products, and natural products may interact with several structural analogues of receptors in humans. Conclusion Each approach presents benefits and drawbacks. In practice, a combination of methods is employed to identify targets of natural products. And natural products' innate functions-based approach is a rapid and selective strategy for target identification. This review provides valuable references for future research in this field, offering insights into techniques and methodologies.
Collapse
Affiliation(s)
- Xuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kinyu Shon
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaofeng Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
2
|
Narendrakumar L, Chakraborty M, Kumari S, Paul D, Das B. β-Lactam potentiators to re-sensitize resistant pathogens: Discovery, development, clinical use and the way forward. Front Microbiol 2023; 13:1092556. [PMID: 36970185 PMCID: PMC10036598 DOI: 10.3389/fmicb.2022.1092556] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 03/12/2023] Open
Abstract
β-lactam antibiotics are one of the most widely used and diverse classes of antimicrobial agents for treating both Gram-negative and Gram-positive bacterial infections. The β-lactam antibiotics, which include penicillins, cephalosporins, monobactams and carbapenems, exert their antibacterial activity by inhibiting the bacterial cell wall synthesis and have a global positive impact in treating serious bacterial infections. Today, β-lactam antibiotics are the most frequently prescribed antimicrobial across the globe. However, due to the widespread use and misapplication of β-lactam antibiotics in fields such as human medicine and animal agriculture, resistance to this superlative drug class has emerged in the majority of clinically important bacterial pathogens. This heightened antibiotic resistance prompted researchers to explore novel strategies to restore the activity of β-lactam antibiotics, which led to the discovery of β-lactamase inhibitors (BLIs) and other β-lactam potentiators. Although there are several successful β-lactam-β-lactamase inhibitor combinations in use, the emergence of novel resistance mechanisms and variants of β-lactamases have put the quest of new β-lactam potentiators beyond precedence. This review summarizes the success stories of β-lactamase inhibitors in use, prospective β-lactam potentiators in various phases of clinical trials and the different strategies used to identify novel β-lactam potentiators. Furthermore, this review discusses the various challenges in taking these β-lactam potentiators from bench to bedside and expounds other mechanisms that could be investigated to reduce the global antimicrobial resistance (AMR) burden.
Collapse
Affiliation(s)
- Lekshmi Narendrakumar
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | | | | | | | | |
Collapse
|
3
|
Cardullo N, Monti F, Muccilli V, Amorati R, Baschieri A. Reaction with ROO• and HOO• Radicals of Honokiol-Related Neolignan Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020735. [PMID: 36677790 PMCID: PMC9867055 DOI: 10.3390/molecules28020735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Honokiol is a natural bisphenol neolignan present in the bark of Magnolia officinalis, whose extracts have been employed in oriental medicine to treat several disorders, showing a variety of biological properties, including antitumor activity, potentially related to radical scavenging. Six bisphenol neolignans with structural motifs related to the natural bioactive honokiol were synthesized. Their chain-breaking antioxidant activity was evaluated in the presence of peroxyl (ROO•) and hydroperoxyl (HOO•) radicals by both experimental and computational methods. Depending on the number and position of the hydroxyl and alkyl groups present on the molecules, these derivatives are more or less effective than the reference natural compound. The rate constant of the reaction with ROO• radicals for compound 7 is two orders of magnitude greater than that of honokiol. Moreover, for compounds displaying quinonic oxidized forms, we demonstrate that the addition of 1,4 cyclohexadiene, able to generate HOO• radicals, restores their antioxidant activity, because of the reducing capability of the HOO• radicals. The antioxidant activity of the oxidized compounds in combination with 1,4-cyclohexadiene is, in some cases, greater than that found for the starting compounds towards the peroxyl radicals. This synergy can be applied to maximize the performances of these new bisphenol neolignans.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Filippo Monti
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Riccardo Amorati
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
- Correspondence: (R.A.); (A.B.)
| | - Andrea Baschieri
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129 Bologna, Italy
- Correspondence: (R.A.); (A.B.)
| |
Collapse
|
4
|
Cui Z, Li C, Chen P, Yang H. An update of label-free protein target identification methods for natural active products. Theranostics 2022; 12:1829-1854. [PMID: 35198076 PMCID: PMC8825594 DOI: 10.7150/thno.68804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Natural active products (NAPs) are derived from chemical substances found in nature that have biological activity and medicinal potential. Screening and revealing the protein targets of NAPs is an indispensable link in the pharmacological and toxicological understanding of NAPs. Proteins are the main factors executing cell functions, and cells rely on the function of proteins to complete various activities in the life cycle. The important mechanism of action of drugs is to regulate cell biological activities by interacting with proteins and other macromolecules. At present, the classic way to screen protein targets is based on the molecular label tracing method, which has a long cycle and changes the molecular structure and pharmacological effects of NAPs. Due to the shortcomings of molecular labelling methods, in recent years, scientists have tried to develop a variety of label-free protein target identification methods for NAPs and have made a certain amount of progress. This article reviews the current protein target identification methods for NAPs with the aim of providing a reference for research on NAP protein targets.
Collapse
Affiliation(s)
- Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
5
|
Tang Y, Wang L, Yi T, Xu J, Wang J, Qin JJ, Chen Q, Yip KM, Pan Y, Hong P, Lu Y, Shen HM, Chen HB. Synergistic effects of autophagy/mitophagy inhibitors and magnolol promote apoptosis and antitumor efficacy. Acta Pharm Sin B 2021; 11:3966-3982. [PMID: 35024319 PMCID: PMC8727919 DOI: 10.1016/j.apsb.2021.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria as a signaling platform play crucial roles in deciding cell fate. Many classic anticancer agents are known to trigger cell death through induction of mitochondrial damage. Mitophagy, one selective autophagy, is the key mitochondrial quality control that effectively removes damaged mitochondria. However, the precise roles of mitophagy in tumorigenesis and anticancer agent treatment remain largely unclear. Here, we examined the functional implication of mitophagy in the anticancer properties of magnolol, a natural product isolated from herbal Magnolia officinalis. First, we found that magnolol induces mitochondrial depolarization, causes excessive mitochondrial fragmentation, and increases mitochondrial reactive oxygen species (mtROS). Second, magnolol induces PTEN-induced putative kinase protein 1 (PINK1)‒Parkin-mediated mitophagy through regulating two positive feedforward amplification loops. Third, magnolol triggers cancer cell death and inhibits neuroblastoma tumor growth via the intrinsic apoptosis pathway. Moreover, magnolol prolongs the survival time of tumor-bearing mice. Finally, inhibition of mitophagy by PINK1/Parkin knockdown or using inhibitors targeting different autophagy/mitophagy stages significantly promotes magnolol-induced cell death and enhances magnolol's anticancer efficacy, both in vitro and in vivo. Altogether, our study demonstrates that magnolol can induce autophagy/mitophagy and apoptosis, whereas blockage of autophagy/mitophagy remarkably enhances the anticancer efficacy of magnolol, suggesting that targeting mitophagy may be a promising strategy to overcome chemoresistance and improve anticancer therapy.
Collapse
Affiliation(s)
- Yancheng Tang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Jigang Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- The First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Ka-Man Yip
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Yihang Pan
- Department of Medical Research, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Peng Hong
- Department of Medical Research, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yingying Lu
- Department of Medical Research, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong SAR 999077, China
- Corresponding authors. Tel./fax: +852 93590902.
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors. Tel./fax: +852 93590902.
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Corresponding authors. Tel./fax: +852 93590902.
| |
Collapse
|
6
|
Ren YS, Li HL, Piao XH, Yang ZY, Wang SM, Ge YW. Drug affinity responsive target stability (DARTS) accelerated small molecules target discovery: Principles and application. Biochem Pharmacol 2021; 194:114798. [PMID: 34678227 DOI: 10.1016/j.bcp.2021.114798] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Drug affinity responsive target stability (DARTS) is a novel target discovery approach and is particularly adept at screening small molecule (SM) targets without requiring any structural modifications. The DARTS method is capable of revealing drug-target interactions from cells or tissues by tracking changes in the stability of proteins acting as receptors of bioactive SMs. Due to its simple operation and high efficiency, the DARTS method has been applied to uncover the drug-action mechanism. This review summarized analytical principles, protocols, validation approaches, applications, and challenges involved in the DARTS method. Due to the innate advantages of the DARTS method, it is expected to be a powerful tool to accelerate SM target discovery, especially for bioactive natural products with unknown mechanisms.
Collapse
Affiliation(s)
- Ying-Shan Ren
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui-Lin Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiu-Hong Piao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhi-You Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shu-Mei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yue-Wei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Li G, Peng X, Guo Y, Gong S, Cao S, Qiu F. Currently Available Strategies for Target Identification of Bioactive Natural Products. Front Chem 2021; 9:761609. [PMID: 34660543 PMCID: PMC8515416 DOI: 10.3389/fchem.2021.761609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
In recent years, biologically active natural products have gradually become important agents in the field of drug research and development because of their wide availability and variety. However, the target sites of many natural products are yet to be identified, which is a setback in the pharmaceutical industry and has seriously hindered the translation of research findings of these natural products as viable candidates for new drug exploitation. This review systematically describes the commonly used strategies for target identification via the application of probe and non-probe approaches. The merits and demerits of each method were summarized using recent examples, with the goal of comparing currently available methods and selecting the optimum techniques for identifying the targets of bioactive natural products.
Collapse
Affiliation(s)
- Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuling Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaoxuan Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Cassiano C, Morretta E, Costantini M, Fassi EMA, Colombo G, Sattin S, Casapullo A. Analysis of Hsp90 allosteric modulators interactome reveals a potential dual action mode involving mitochondrial MDH2. Bioorg Chem 2021; 115:105258. [PMID: 34392176 DOI: 10.1016/j.bioorg.2021.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
Hsp90 (i.e., Heat shock protein 90) is a well-established therapeutic target for several diseases, ranging from misfolding-related disfunctions to cancer. In this framework, we have developed in recent years a family of benzofuran compounds that act as Hsp90 allosteric modulators. Such molecules can interfere with the stability of some relevant Hsp90 client oncoproteins, showing a low μM cytotoxic activity in vitro in cancer cell lines. Here we identify the target profile of these chemical probes by means of chemical proteomics, which established MDH2 (mitochondrial malate dehydrogenase) as an additional relevant cellular target that might help elucidate the molecular mechanism of their citotoxicity. Western blotting, DARTS (i.e., Drug Affinity Responsive Target Stability) and enzymatic assays data confirmed a dose-dependent interaction of MDH2 with several members of the benzofuran Hsp90 modulators family and a computational model allowed to interpret the observed interactions.
Collapse
Affiliation(s)
- Chiara Cassiano
- Università degli Studi di Salerno, Dipartimento di Farmacia, via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Elva Morretta
- Università degli Studi di Salerno, Dipartimento di Farmacia, via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Matteo Costantini
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, 20133 Milano, Italy
| | - Enrico M A Fassi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC, CNR, Via Mario Bianco 9, 20131 Milano, Italy; Università degli studi di Pavia, Dipartimento di Chimica, Via Taramelli 12, 27100 Pavia, Italy.
| | - Sara Sattin
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, 20133 Milano, Italy.
| | - Agostino Casapullo
- Università degli Studi di Salerno, Dipartimento di Farmacia, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| |
Collapse
|
9
|
Dai L, Li Z, Chen D, Jia L, Guo J, Zhao T, Nordlund P. Target identification and validation of natural products with label-free methodology: A critical review from 2005 to 2020. Pharmacol Ther 2020; 216:107690. [PMID: 32980441 DOI: 10.1016/j.pharmthera.2020.107690] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Natural products (NPs) have been an important source of therapeutic drugs in clinic use and contributed many chemical probes for research. The usefulness of NPs is however often marred by the incomplete understanding of their direct cellular targets. A number of experimental methods for drug target identification have been developed over the years. One class of methods, termed "label-free" methodology, exploits the energetic and biophysical features accompanying the association of macromolecules with drugs and other compounds in their native forms. Herein we review the working principles, assay implementations, and key applications of the most important approaches, and also give examples where they have been applied to NPs. We also assess the key advantages and limitations of each method. Furthermore, we address when and how the label-free methodology can be particularly useful considering some of the unique features of NP chemistry and bioactivation.
Collapse
Affiliation(s)
- Lingyun Dai
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.
| | - Zhijie Li
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Dan Chen
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Lin Jia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China
| | - Tianyun Zhao
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|