1
|
Chougle A, Rezk A, Afzal SUB, Mohammed AK, Shetty D, Nayfeh A. Evolving Role of Conjugated Polymers in Nanoelectronics and Photonics. NANO-MICRO LETTERS 2025; 17:230. [PMID: 40272616 PMCID: PMC12021782 DOI: 10.1007/s40820-025-01748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/25/2025] [Indexed: 04/27/2025]
Abstract
Conjugated polymers (CPs) have emerged as an interesting class of materials in modern electronics and photonics, characterized by their unique delocalized π-electron systems that confer high flexibility, tunable electronic properties, and solution processability. These organic polymers present a compelling alternative to traditional inorganic semiconductors, offering the potential for a new generation of optoelectronic devices. This review explores the evolving role of CPs, exploring the molecular design strategies and innovative approaches that enhance their optoelectronic properties. We highlight notable progress toward developing faster, more efficient, and environmentally friendly devices by analyzing recent advancements in CP-based devices, including organic photovoltaics, field-effect transistors, and nonvolatile memories. The integration of CPs in flexible sustainable technologies underscores their potential to revolutionize future electronic and photonic systems. As ongoing research pushes the frontiers of molecular engineering and device architecture, CPs are poised to play an essential role in shaping next-generation technologies that prioritize performance, sustainability, and adaptability.
Collapse
Affiliation(s)
- Amaan Chougle
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE
| | - Ayman Rezk
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE
| | - Syed Usama Bin Afzal
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE
| | | | - Dinesh Shetty
- Department of Chemistry, Khalifa University, 127788, Abu Dhabi, UAE.
- Center for Catalysis and Separation (CeCaS), Khalifa University, 127788, Abu Dhabi, UAE.
| | - Ammar Nayfeh
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE.
- Research and Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
2
|
Ferreira CSG, Sousa MS, Günther FS, Miranda PB. On the mechanism for work function change of gold electrodes by ultrathin polyethyleneimine (PEI) films: Effect of molecular order. J Chem Phys 2024; 161:174709. [PMID: 39498887 DOI: 10.1063/5.0234654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Polyethyleneimine (PEI) is a widely used cationic polyelectrolyte. In organic electronics, it is a universal surface modifier for shifting the electrode work function (Φ) and improving charge injection into electronic devices. This effect may depend on the conformation and dipolar order of the PEI ultrathin film, but their detailed experimental evaluation has not yet been reported. Thus, we used sum-frequency generation (SFG) spectroscopy to probe the net orientation of polar groups of PEI films on glass and gold. The films were fabricated by spin-coating from alcoholic solutions or by dip-coating from aqueous solutions of various pH values, with both branched (b-PEI) and linear (l-PEI) structures. The obtained SFG spectra and atomic force microscopy (AFM) images indicated that the conformational ordering of the PEI layers increases over the period of 14 days after fabrication, being slightly more pronounced for l-PEI vs b-PEI, and for dip-coating vs spin coating fabrication. Furthermore, both the pH of the dip-coating solutions and the substrate nature influence the final morphology and order of the adsorbed films. On glass, they are optimized at an intermediate pH 5, while on gold, the greatest homogeneity is observed at pH 2 and the largest dipolar order is observed at pH 10. The pH dependence of changes in the work function of gold by PEI (|ΔΦ|) suggests that the electronic contribution is dominant. Nevertheless, the evolution of the PEI dipolar ordering was accompanied by small variations of |ΔΦ|, suggesting that it does have a significant contribution, especially at conditions for which the electronic contribution is reduced.
Collapse
Affiliation(s)
- Claudia S G Ferreira
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense, 400, São Carlos - SP 13566-590, Brazil
| | - Marcos S Sousa
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense, 400, São Carlos - SP 13566-590, Brazil
| | - Florian S Günther
- Departamento de Física, Instituto de Geociências e Ciências Exatas (IGCE), Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Av. 24A, 1515, Rio Claro - SP 13506-900, Brazil
| | - Paulo B Miranda
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense, 400, São Carlos - SP 13566-590, Brazil
| |
Collapse
|
3
|
Jouybar S, Naji L, Mozaffari SA, Sarabadani Tafreshi S. In Situ Electrochemical Cobalt Doping in Perovskite-Structured Lanthanum Nickelate Thin Film Toward Energy Conversion Enhancement of Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32857-32873. [PMID: 38865590 DOI: 10.1021/acsami.4c04669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
This study demonstrates that the electrochemical doping of lanthanum nickelate (LNO) with cobalt ions is a promising strategy for enhancing its physical and electrochemical properties, which are critical for energy storage and conversion devices. LNO emerges as a promising hole transport layer (HTL) in solar cells due to its stability, large band gap, and high transparency. Nevertheless, its low conductivity and improperly aligned band positions are persistent problems. Here, in a pioneering endeavor, Co-doped LNO thin films were synthesized electrochemically and applied as the HTL in polymer solar cells (PSCs). Characterization revealed the impact of Co doping on the electrochemical, structural, morphological, and optical properties of LNO thin films. Depending on the Co doping level, PSCs based on 10 mol % Co-doped LNO outperformed pure LNO, achieving a champion efficiency of 6.11% with enhanced short-circuit current density (12.84 mA cm-2), fill factor (68%), open-circuit voltage (0.70 V), and external quantum efficiency (82.6%). This enhancement resulted from decreased series resistance, refined surface morphology, minimized trap-assisted recombination, enhanced conductivity, increased charge carrier production, favorable energy level alignment, and improved current extraction facilitated by LNC0.10O HTL. Moreover, the unencapsulated PSC-LNC0.10O long-term stability notably improved and retained 86% of its initial PCE after 450 h storage in ambient air, 82% after being continuously heated to 85 °C for 300 h, and 80% after operating at maximum power point for 300 h. These findings offer a straightforward approach to enhancing PSC performance through Co doping of LNO, supported by density functional theory (DFT) calculations that validate the experimental results and confirm the improvement in optical properties and stability of PSCs as an HTL.
Collapse
Affiliation(s)
- Shirzad Jouybar
- Department of Chemistry, AmirKabir University of Technology, 424 Hafez Avenue, P. O. Box: 15875-4413, Tehran, Iran
| | - Leila Naji
- Department of Chemistry, AmirKabir University of Technology, 424 Hafez Avenue, P. O. Box: 15875-4413, Tehran, Iran
| | - Sayed Ahmad Mozaffari
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P. O. Box: 33535-111, Tehran, Iran
| | - Saeedeh Sarabadani Tafreshi
- Department of Chemistry, AmirKabir University of Technology, 424 Hafez Avenue, P. O. Box: 15875-4413, Tehran, Iran
- School of Chemistry, University of Leeds, LS29JT Leeds, U.K
| |
Collapse
|
4
|
Schnack-Petersen AK, Pápai M, Coriani S, Møller KB. A theoretical study of the time-resolved x-ray absorption spectrum of the photoionized BT-1T cation. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:034102. [PMID: 37250952 PMCID: PMC10224778 DOI: 10.1063/4.0000183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
The time-resolved x-ray absorption spectrum of the BT-1T cation (BT-1T+) is theoretically simulated in order to investigate the charge transfer reaction of the system. We employ both trajectory surface hopping and quantum dynamics to simulate the structural evolution over time and the changes in the state populations. To compute the static x-ray absorption spectra (XAS) of the ground and excited states, we apply both the time-dependent density functional theory and the coupled cluster singles and doubles method. The results obtained are in good agreement between the methods. It is, furthermore, found that the small structural changes that occur during the reaction have little effect on the static XAS. Hence, the tr-XAS can be computed based on the state populations determined from a nuclear dynamics simulation and one set of static XAS calculations, utilizing the ground state optimized geometry. This approach can save considerable computational resources, as the static spectra need not to be calculated for all geometries. As BT-1T is a relatively rigid molecule, the outlined approach should only be considered when investigating non-radiative decay processes in the vicinity of the Franck-Condon point.
Collapse
Affiliation(s)
| | | | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Klaus Braagaard Møller
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Thin-Film Carbon Nitride (C2N)-Based Solar Cell Optimization Considering Zn1−xMgxO as a Buffer Layer. Processes (Basel) 2022. [DOI: 10.3390/pr11010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Carbon nitride (C2N), a two-dimensional material, is rapidly gaining popularity in the photovoltaic (PV) research community owing to its excellent properties, such as high thermal and chemical stability, non-toxic composition, and low fabrication cost over other thin-film solar cells. This study uses a detailed numerical investigation to explore the influence of C2N-based solar cells with zinc magnesium oxide (Zn1−xMgxO) as a buffer layer. The SCAPS-1D simulator is utilized to examine the performance of four Mg-doped buffer layers (x = 0.0625, 0.125, 0.1875, and 0.25) coupled with the C2N-based absorber layer. The influence of the absorber and buffer layers’ band alignment, quantum efficiency, thickness, doping density, defect density, and operating temperature are analyzed to improve the cell performance. Based on the simulations, increasing the buffer layer Mg concentration above x = 0.1875 reduces the device performance. Furthermore, it is found that increasing the absorber layer thickness is desirable for good device efficiency, whereas a doping density above 1015 cm−3 can degrade the cell performance. After optimization of the buffer layer thickness and doping density at 40 nm and 1018 cm−3, the cell displayed its maximum performance. Among the four structures, C2N/Zn0.8125Mg0.1875O demonstrated the highest PCE of 19.01% with a significant improvement in open circuit voltage (Voc), short circuit density (Jsc), and fill factor (FF). The recorded results are in good agreement with the standard theoretical studies.
Collapse
|
6
|
Anrango-Camacho C, Pavón-Ipiales K, Frontana-Uribe BA, Palma-Cando A. Recent Advances in Hole-Transporting Layers for Organic Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:443. [PMID: 35159788 PMCID: PMC8840354 DOI: 10.3390/nano12030443] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Global energy demand is increasing; thus, emerging renewable energy sources, such as organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption. Within OSC's advancements, the development of efficient and stable interface materials is essential to achieve high performance, long-term stability, low costs, and broader applicability. Inorganic and nanocarbon-based materials show a suitable work function, tunable optical/electronic properties, stability to the presence of moisture, and facile solution processing, while organic conducting polymers and small molecules have some advantages such as fast and low-cost production, solution process, low energy payback time, light weight, and less adverse environmental impact, making them attractive as hole transporting layers (HTLs) for OSCs. This review looked at the recent progress in metal oxides, metal sulfides, nanocarbon materials, conducting polymers, and small organic molecules as HTLs in OSCs over the past five years. The endeavors in research and technology have optimized the preparation and deposition methods of HTLs. Strategies of doping, composite/hybrid formation, and modifications have also tuned the optical/electrical properties of these materials as HTLs to obtain efficient and stable OSCs. We highlighted the impact of structure, composition, and processing conditions of inorganic and organic materials as HTLs in conventional and inverted OSCs.
Collapse
Affiliation(s)
- Cinthya Anrango-Camacho
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| | - Karla Pavón-Ipiales
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable UAEMex-UNAM, Carretera Toluca Atlacomulco, Km 14.5, Toluca 50200, Mexico;
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| |
Collapse
|
7
|
Hoff A, Farahat ME, Pahlevani M, Welch GC. Tin Oxide Electron Transport Layers for Air-/Solution-Processed Conventional Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1568-1577. [PMID: 34978404 DOI: 10.1021/acsami.1c19790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Commercialization of organic solar cells (OSC) is imminent. Interlayers between the photoactive film and the electrodes are critical for high device efficiency and stability. Here, the applicability of SnO2 nanoparticles (SnO2 NPs) as the electron transport layer (ETL) in conventional OSCs is evaluated. A commercial SnO2 NPs solution in butanol is mixed with ethanol (EtOH) as a processing co-solvent to improve film formation for spin and slot-die coating deposition procedures. When processed with 200% v/v EtOH, the SnO2 NPs film presents uniform film quality and low photoactive layer degradation. The optimized SnO2 NPs ink is coated, in air, on top of two polymer:fullerene-based systems and a nonfullerene system, to form an efficient ETL film. In every case, addition of SnO2 NPs film significantly enhances photovoltaic performance, from 3.4 and 3.7% without the ETL to 6.0 and 5.7% when coated on top of PBDB-T:PC61BM and PPDT2FBT:PC61BM, respectively, and from 3.7 to 7.1% when applied on top of the PTQ10:IDIC system. Flexible, all slot-die-coated devices, in air, are also fabricated and tested, demonstrating the versatility of the SnO2 NPs ink for efficient ETL formation on top of organic photoactive layers, processed under ambient condition, ideal for practical large-scale production of OSCs.
Collapse
Affiliation(s)
- Anderson Hoff
- Department of Chemistry, University of Calgary, 2500 University Drive Northwest, Calgary, AlbertaT2N 1N4, Canada
- Department of Electrical and Computer Engineering, Queen's University, 19 Union Street, Kingston, OntarioK7L 3N6, Canada
| | - Mahmoud E Farahat
- Department of Chemistry, University of Calgary, 2500 University Drive Northwest, Calgary, AlbertaT2N 1N4, Canada
- Department of Electrical and Computer Engineering, Queen's University, 19 Union Street, Kingston, OntarioK7L 3N6, Canada
| | - Majid Pahlevani
- Department of Chemistry, University of Calgary, 2500 University Drive Northwest, Calgary, AlbertaT2N 1N4, Canada
- Department of Electrical and Computer Engineering, Queen's University, 19 Union Street, Kingston, OntarioK7L 3N6, Canada
| | - Gregory C Welch
- Department of Chemistry, University of Calgary, 2500 University Drive Northwest, Calgary, AlbertaT2N 1N4, Canada
- Department of Electrical and Computer Engineering, Queen's University, 19 Union Street, Kingston, OntarioK7L 3N6, Canada
| |
Collapse
|
8
|
Muchuweni E, Mombeshora ET, Martincigh BS, Nyamori VO. Recent Applications of Carbon Nanotubes in Organic Solar Cells. Front Chem 2022; 9:733552. [PMID: 35071180 PMCID: PMC8770437 DOI: 10.3389/fchem.2021.733552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
In recent years, carbon-based materials, particularly carbon nanotubes (CNTs), have gained intensive research attention in the fabrication of organic solar cells (OSCs) due to their outstanding physicochemical properties, low-cost, environmental friendliness and the natural abundance of carbon. In this regard, the low sheet resistance and high optical transmittance of CNTs enables their application as alternative anodes to the widely used indium tin oxide (ITO), which is toxic, expensive and scarce. Also, the synergy between the large specific surface area and high electrical conductivity of CNTs provides both large donor-acceptor interfaces and conductive interpenetrating networks for exciton dissociation and charge carrier transport. Furthermore, the facile tunability of the energy levels of CNTs provides proper energy level alignment between the active layer and electrodes for effective extraction and transportation of charge carriers. In addition, the hydrophobic nature and high thermal conductivity of CNTs enables them to form protective layers that improve the moisture and thermal stability of OSCs, thereby prolonging the devices' lifetime. Recently, the introduction of CNTs into OSCs produced a substantial increase in efficiency from ∼0.68 to above 14.00%. Thus, further optimization of the optoelectronic properties of CNTs can conceivably help OSCs to compete with silicon solar cells that have been commercialized. Therefore, this study presents the recent breakthroughs in efficiency and stability of OSCs, achieved mainly over 2018-2021 by incorporating CNTs into electrodes, active layers and charge transport layers. The challenges, advantages and recommendations for the fabrication of low-cost, highly efficient and sustainable next-generation OSCs are also discussed, to open up avenues for commercialization.
Collapse
Affiliation(s)
| | | | | | - Vincent O. Nyamori
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Salma SA, Kim JH. Effect of the Side Chain Functionality of the Conjugated Polyelectrolytes as a Cathode Interlayer Material on the Photovoltaic Performances. Macromol Res 2022. [DOI: 10.1007/s13233-022-0011-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Chen F, Nakano K, Kaji Y, Adachi K, Hashizume D, Tajima K. Triphenyleno[1,2- c:7,8- c']bis([1,2,5]thiadiazole) as a V-Shaped Electron-Deficient Unit to Construct Wide-Bandgap Amorphous Polymers for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57743-57749. [PMID: 34813278 DOI: 10.1021/acsami.1c19708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The backbone shape of semiconducting polymers strongly affects their electronic properties and morphologies in films, yet the conventional design principle for building blocks focuses on using linear main chains to maintain high crystallinity. Here, we developed a V-shaped unit, triphenyleno[1,2-c:7,8-c']bis([1,2,5]thiadiazole) (TPTz), featuring two 1,2,5-thiadiazole rings fused to a triphenylene core with strong electron-withdrawing properties and an extended conjugation plane. We used TPTz to prepare a highly soluble copolymer, PTPTz-indacenodithiophene (IDT), which exhibited a wide bandgap of 1.94 eV and energy levels suitable for the donor polymer in organic solar cells (OSCs) in combination with non-fullerene acceptors. Despite the amorphous nature of the polymer film, single-junction OSCs with PTPTz-IDT:Y6 as the active layer achieved a power conversion efficiency of 10.4% (JSC = 19.8 mA cm-2; VOC = 0.80 V; fill factor = 0.66), which is the highest value reported for a single-junction OSC with IDT-based donor polymers. This work demonstrates that TPTz is a promising electron-acceptor unit for developing functional polymers with zigzag structures.
Collapse
Affiliation(s)
- Fengkun Chen
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kyohei Nakano
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yumiko Kaji
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Qamar Kayani K, Yaqoob U, Jabeen S, Iqbal S, Yaseen M, Khalid M, Salim Akhter M, Iqbal J. Tris-isopropyl-sily-ethynyl anthracene based small molecules for organic solar cells with efficient photovoltaic parameters. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Socol M, Preda N. Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1117. [PMID: 33925952 PMCID: PMC8145415 DOI: 10.3390/nano11051117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Continuing growth in global energy consumption and the growing concerns regarding climate change and environmental pollution are the strongest drivers of renewable energy deployment. Solar energy is the most abundant and cleanest renewable energy source available. Nowadays, photovoltaic technologies can be regarded as viable pathways to provide sustainable energy generation, the achievement attained in designing nanomaterials with tunable properties and the progress made in the production processes having a major impact in their development. Solar cells involving hybrid nanocomposite layers have, lately, received extensive research attention due to the possibility to combine the advantages derived from the properties of both components: flexibility and processability from the organic part and stability and optoelectronics features from the inorganic part. Thus, this review provides a synopsis on hybrid solar cells developed in the last decade which involve composite layers deposited by spin-coating, the most used deposition method, and matrix-assisted pulsed laser evaporation, a relatively new deposition technique. The overview is focused on the hybrid nanocomposite films that can use conducting polymers and metal phthalocyanines as p-type materials, fullerene derivatives and non-fullerene compounds as n-type materials, and semiconductor nanostructures based on metal oxide, chalcogenides, and silicon. A survey regarding the influence of various factors on the hybrid solar cell efficiency is given in order to identify new strategies for enhancing the device performance in the upcoming years.
Collapse
|
13
|
Quan L, Lee SS, Kalyon DM. Dynamics of the sub-ambient gelation and shearing of solutions of P3HT and P3HT blends towards active layer formation in bulk heterojunction organic solar cells. SOFT MATTER 2021; 17:1642-1654. [PMID: 33367403 DOI: 10.1039/d0sm01759k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic solar cells (OSCs) containing an active layer consisting of a nanostructured blend of a conjugated polymer like poly(3-hexylthiophene) (P3HT) and an electron acceptor have the potential of competing against silicon-based photovoltaic panels. However, this potential is largely unfulfilled first due to interrelated production and stability issues of organic solar cells and second due to the unscalable nature of the generally employed spin coating process used for the fabrication of organic solar cells. Furthermore, alternatives to spin coating, especially relying on continuous polymer processing methods like extrusion and coating, cannot be readily applied due to the typically low shear viscosity and elasticity of polymer solutions making up the active layer. Recently, He et al. have reported that the gelation of P3HT with [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) under sub-ambient conditions can provide a new route to the processing of the active layers of bulk heterojunction solar cells. Furthermore, increases in power conversion efficiencies (PCEs) of the P3HT/PC60BM active layer were determined to be possible under certain shearing and thermal histories of the P3HT/PC60BM gels. Here oscillatory and steady torsional flows were used to investigate the gel formation dynamics of P3HT with a recently proposed non-fullerene acceptor o-IDTBR under sub-ambient conditions and compared with the gelation behavior of P3HT/PC60BM blends. The rheological material functions as well as the gel strengths defined on the basis of linear viscoelastic material functions, characterized via small-amplitude oscillatory shearing, were observed to be functions of the P3HT and o-IDTBR concentrations, the solvent used and the shearing conditions. Overall, the P3HT gels which formed upon quenching to sub-zero temperatures were found to be stable during small-amplitude oscillatory shear (linear viscoelastic range) but broke down even at the relatively low shear rates associated with steady torsional flows, suggesting that the shearing conditions used during the processing of gels of P3HT and blends of P3HT with small molecule acceptors can alter the gel structure, possibly leading to changes in the resulting active layer performance.
Collapse
Affiliation(s)
- Li Quan
- Chemical Engineering and Materials Science, Stevens Institute of Technology, Castle Point St., Hoboken, NJ 07030, USA.
| | - Stephanie S Lee
- Chemical Engineering and Materials Science, Stevens Institute of Technology, Castle Point St., Hoboken, NJ 07030, USA.
| | - Dilhan M Kalyon
- Chemical Engineering and Materials Science, Stevens Institute of Technology, Castle Point St., Hoboken, NJ 07030, USA.
| |
Collapse
|
14
|
Complex electrochemical study of reduced graphene oxide/Pt produced by Nd:YAG pulsed laser reduction as photo-anode in polymer solar cells. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Aatif M, Tiwari JP. Futuristic electron transport layer based on multifunctional interactions of ZnO/TCNE for stable inverted organic solar cells. RSC Adv 2020; 10:42305-42317. [PMID: 35516762 PMCID: PMC9057968 DOI: 10.1039/d0ra08093d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022] Open
Abstract
Solution-processed inverted bulk heterojunction (BHJ) organic solar cells (OSCs) are expected to play a significant role in the future of large-area flexible devices and printed electronics. In order to catch the potential of this inverted BHJ technology for use in devices, a solar cell typically requires low-resistance ohmic contact between the photoactive layers and metal electrodes, since it not only boosts performance but also protects the unstable conducting polymer-based active layer from degradation in the working environment. Interfacial engineering delivers a powerful approach to enhance the efficiency and stability of OSCs. In this study, we demonstrated the surface passivation of the ZnO electron transport layer (ETL) by an ultrathin layer of tetracyanoethylene (TCNE). We show that the TCNE film could provide a uniform and intimate interfacial contact between the ZnO and photo-active layer, simultaneously reducing the recombination of electron and holes and series resistance at the contact interface. After successful insertion of TCNE between the ZnO film and the active layer, the parameters, such as short circuit current density (J sc) and fill factor (FF), greatly improved, and also a high-power conversion efficiency (PCE) of ∼8.59% was achieved, which is ∼15% more than that of the reference devices without a TCNE layer. The devices fabricated were based on a poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b : 4,5-b']dithiophene-2,6-diyl]-[3-fluoro-2[(2-ethylhexyl)-carbonyl]-thieno[3,4-b]thiophenediyl]] (PTB7):(6,6)-phenyl C71 butyric acid methyl ester (PC71BM) blend system. These results suggest that this surface modification strategy could be readily extended in developing large-scale roll-to-roll fabrication of OSCs.
Collapse
Affiliation(s)
- Md Aatif
- Advanced Materials and Devices Metrology Division (Photovoltaic Metrology Group), CSIR-National Physical Laboratory New Delhi 110012 India +91-11-4560-8640
- Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC Campus Ghaziabad 201002 India
| | - J P Tiwari
- Advanced Materials and Devices Metrology Division (Photovoltaic Metrology Group), CSIR-National Physical Laboratory New Delhi 110012 India +91-11-4560-8640
- Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC Campus Ghaziabad 201002 India
| |
Collapse
|
16
|
R. Murad A, Iraqi A, Aziz SB, N. Abdullah S, Brza MA. Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review. Polymers (Basel) 2020; 12:E2627. [PMID: 33182241 PMCID: PMC7695322 DOI: 10.3390/polym12112627] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023] Open
Abstract
In this review paper, we present a comprehensive summary of the different organic solar cell (OSC) families. Pure and doped conjugated polymers are described. The band structure, electronic properties, and charge separation process in conjugated polymers are briefly described. Various techniques for the preparation of conjugated polymers are presented in detail. The applications of conductive polymers for organic light emitting diodes (OLEDs), organic field effect transistors (OFETs), and organic photovoltaics (OPVs) are explained thoroughly. The architecture of organic polymer solar cells including single layer, bilayer planar heterojunction, and bulk heterojunction (BHJ) are described. Moreover, designing conjugated polymers for photovoltaic applications and optimizations of highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy levels are discussed. Principles of bulk heterojunction polymer solar cells are addressed. Finally, strategies for band gap tuning and characteristics of solar cell are presented. In this article, several processing parameters such as the choice of solvent(s) for spin casting film, thermal and solvent annealing, solvent additive, and blend composition that affect the nano-morphology of the photoactive layer are reviewed.
Collapse
Affiliation(s)
- Ary R. Murad
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK;
- Department of Pharmaceutical Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal, Sulaimani 46023, Iraq
| | - Ahmed Iraqi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq
- Department of Civil engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Sozan N. Abdullah
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - Mohamad A. Brza
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia;
| |
Collapse
|
17
|
Nair SS, Mishra SK, Kumar D. Review – polymeric materials for energy harvesting and storage applications. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1826519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sarita S Nair
- Department of Applied Chemistry & Polymer Technology, Delhi Technological University, Delhi, India
| | | | - D. Kumar
- Department of Applied Chemistry & Polymer Technology, Delhi Technological University, Delhi, India
| |
Collapse
|
18
|
Khalili K, Inhester L, Arnold C, Gertsen AS, Andreasen JW, Santra R. Simulation of time-resolved x-ray absorption spectroscopy of ultrafast dynamics in particle-hole-excited 4-(2-thienyl)-2,1,3-benzothiadiazole. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:044101. [PMID: 32665964 PMCID: PMC7340508 DOI: 10.1063/4.0000016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 06/01/2023]
Abstract
To date, alternating co-polymers based on electron-rich and electron-poor units are the most attractive materials to control functionality of organic semiconductor layers in which ultrafast excited-state processes play a key role. We present a computational study of the photoinduced excited-state dynamics of the 4-(2-thienyl)-2,1,3-benzothiadiazole (BT-1T) molecule, which is a common building block in the backbone of π-conjugated polymers used for organic electronics. In contrast to homo-polymer materials, such as oligothiophene, BT-1T has two non-identical units, namely, thiophene and benzothiadiazole, making it attractive for intramolecular charge transfer studies. To gain a thorough understanding of the coupling of excited-state dynamics with nuclear motion, we consider a scenario based on femtosecond time-resolved x-ray absorption spectroscopy using an x-ray free-electron laser in combination with a synchronized ultraviolet femtosecond laser. Using Tully's fewest switches surface hopping approach in combination with excited-state calculations at the level of configuration interaction singles, we calculate the gas-phase x-ray absorption spectrum at the carbon and nitrogen K edges as a function of time after excitation to the lowest electronically excited state. The results of our time-resolved calculations exhibit the charge transfer driven by non-Born-Oppenheimer physics from the benzothiadiazole to thiophene units during relaxation to the ground state. Furthermore, our ab initio molecular dynamics simulations indicate that the excited-state relaxation processes involve bond elongation in the benzothiadiazole unit as well as thiophene ring puckering at a time scale of 100 fs. We show that these dynamical trends can be identified from the time-dependent x-ray absorption spectrum.
Collapse
Affiliation(s)
- Khadijeh Khalili
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | | | | | - Anders S. Gertsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - Jens Wenzel Andreasen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
19
|
Feng X, Wang Y, Xiao T, Shen Z, Ren Y, Lu G, Bu L. In situ Measuring Film-Depth-Dependent Light Absorption Spectra for Organic Photovoltaics. Front Chem 2020; 8:211. [PMID: 32318544 PMCID: PMC7154162 DOI: 10.3389/fchem.2020.00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/05/2020] [Indexed: 12/01/2022] Open
Abstract
Organic donor-acceptor bulk heterojunction are attracting wide interests for solar cell applications due to solution processability, mechanical flexibility, and low cost. The photovoltaic performance of such thin film is strongly dependent on vertical phase separation of each component. Although film-depth-dependent light absorption spectra measured by non-in situ methods have been used to investigate the film-depth profiling of organic semiconducting thin films, the in situ measurement is still not well-resolved. In this work, we propose an in situ measurement method in combination with a self-developed in situ instrument, which integrates a capacitive coupled plasma generator, a light source, and a spectrometer. This in situ method and instrument are easily accessible and easily equipped in laboratories of the organic electronics, which could be used to conveniently investigate the film-depth-dependent optical and electronic properties.
Collapse
Affiliation(s)
- Xiang Feng
- Frontier Institute of Science and Technology, and School of Science, Xi'an Jiaotong University, Xi'an, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Yuheng Wang
- Frontier Institute of Science and Technology, and School of Science, Xi'an Jiaotong University, Xi'an, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Tong Xiao
- Frontier Institute of Science and Technology, and School of Science, Xi'an Jiaotong University, Xi'an, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Zichao Shen
- Frontier Institute of Science and Technology, and School of Science, Xi'an Jiaotong University, Xi'an, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Yurong Ren
- Frontier Institute of Science and Technology, and School of Science, Xi'an Jiaotong University, Xi'an, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, and School of Science, Xi'an Jiaotong University, Xi'an, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Laju Bu
- Frontier Institute of Science and Technology, and School of Science, Xi'an Jiaotong University, Xi'an, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Chibac-Scutaru AL, Cojocaru C, Coroabă A, Roman G, Săcărescu G, Simionescu M, Săcărescu L. Nano-assembled oligosilane–pyrazoline structures and their optical properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Combined parametric optimization of P3HT: PC70BM films for efficient bulk-heterojunction solar cells. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04421-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Coleone AP, Lascane LG, Batagin-Neto A. Polypyrrole derivatives for optoelectronic applications: a DFT study on the influence of side groups. Phys Chem Chem Phys 2019; 21:17729-17739. [PMID: 31367712 DOI: 10.1039/c9cp02638j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Conjugated organic polymers have been considered interesting materials for various technological applications, mainly due to their unique optoelectronic properties and the variety of methods employed in their synthesis. In this context, polypyrrole (PPy) derivatives have been widely employed. The great versatility of synthesis of this material allows the production of a number of derivatives with distinct properties, allowing their application in several areas. In this report, aiming to guide the design of compounds with specific features, electronic structure calculations were conducted to evaluate the influence of side groups in the structural, optical and electronic properties of PPy derivatives. The calculations were carried out for oligomeric systems in the framework of density functional theory. Preliminary benchmark studies were conducted by employing two distinct functionals for geometry optimization and evaluation of optoelectronic properties. Comparative studies of the bond length alternation, spatial and energetic distribution of the frontier orbitals, electronic gaps, exciton binding energies, optical absorption spectra and electronic density of states were conducted for each derivative and the influence of the side groups was discussed in terms of their electron donation/withdrawing properties. A set of simple rules (linear equations) was proposed for the prediction of optoelectronic properties of PPy derivatives. In particular, the results have shown that simple Hammett parameters of side groups are sufficient to enable the design of improved materials.
Collapse
Affiliation(s)
- Alex Pifer Coleone
- São Paulo State University (UNESP), Faculty of Sciences, POSMAT, Campus of Bauru, Bauru, SP, Brazil.
| | | | | |
Collapse
|