1
|
Gandini T, Vaghi F, Laface Z, Macetti G, Bossi A, Penconi M, Luisa Gelmi M, Bucci R. Innovative On-Resin and in Solution Peptidomimetics Synthesis via Metal-Free Photocatalytic Approach. Chemistry 2024; 30:e202402790. [PMID: 39367746 PMCID: PMC11618039 DOI: 10.1002/chem.202402790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Nowadays, peptidomimetics are widely studied, being useful tools in drug discovery and medicinal chemistry. The coupling between a carboxylic acid with an amine to form a peptide bond is the most common reaction to obtain peptides/peptidomimetics. In this work, we have investigated an innovative metal-free photoredox-catalyzed carbamoylation to form peptidomimetics thanks to the reaction between dihydropyridines functionalized with amino acids (or peptide sequences) and differently functionalized imines. As the organic photocatalyst, we used 4CzIPN, a donor-acceptor cyanoarene vastly used in photoredox catalysis. By easily modulating the amino acid (or peptide sequence), which is directly attached to the dihydropyridine, we proposed this key-reaction as new valuable method to obtain peptidomimetics, in situ building the not-natural portion of the sequence. Moreover, we successfully employed this methodology in solid phase peptide synthesis, both inserting the new photoredox-generated amino acid at the end or in the middle of the sequence. Peptides with different lengths and secondary structures were prepared, proving the success of this approach, even in sterically hindered environment. Herein, to the best of our knowledge, we describe the first photocatalytic protocol which allows the building of the peptide backbone, with the possibility of simultaneously inserting a non-coded amino acid in the sequence.
Collapse
Affiliation(s)
- Tommaso Gandini
- Dipartimento di Scienze FarmaceuticheSez. Chimica Generale e Organica A. MarchesiniUniversità degli Studi di MilanoVia Venezian 2120133MilanItaly
| | - Francesco Vaghi
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Zoe Laface
- Dipartimento di Scienze FarmaceuticheSez. Chimica Generale e Organica A. MarchesiniUniversità degli Studi di MilanoVia Venezian 2120133MilanItaly
| | - Giovanni Macetti
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi 1920133MilanItaly
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche ‘G. Natta' (SCITEC)Centro Nazionale RicercheVia Fantoli 16/1520138MilanoItaly
| | - Marta Penconi
- Istituto di Scienze e Tecnologie Chimiche ‘G. Natta' (SCITEC)Centro Nazionale RicercheVia Fantoli 16/1520138MilanoItaly
| | - Maria Luisa Gelmi
- Dipartimento di Scienze FarmaceuticheSez. Chimica Generale e Organica A. MarchesiniUniversità degli Studi di MilanoVia Venezian 2120133MilanItaly
| | - Raffaella Bucci
- Dipartimento di Scienze FarmaceuticheSez. Chimica Generale e Organica A. MarchesiniUniversità degli Studi di MilanoVia Venezian 2120133MilanItaly
| |
Collapse
|
2
|
Rimoldi I, Coffetti G, Gandolfi R, Facchetti G. Hybrid Metal Catalysts as Valuable Tools in Organic Synthesis: An Overview of the Recent Advances in Asymmetric C─C Bond Formation Reactions. Molecules 2024; 29:5090. [PMID: 39519731 PMCID: PMC11547358 DOI: 10.3390/molecules29215090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Carbon-carbon bond formation represents a key reaction in organic synthesis, resulting in paramount importance for constructing the carbon backbone of organic molecules. However, traditional metal-based catalysis, despite its advantages, often struggles with issues related to efficiency, selectivity, and sustainability. On the other hand, while biocatalysis offers superior selectivity due to an extraordinary recognition process of the substrate, the scope of its applicable reactions remains somewhat limited. In this context, Artificial Metalloenzymes (ArMs) and Metallo Peptides (MPs) offer a promising and not fully explored solution, merging the two fields of transition metal catalysis and biotransformations, by inserting a catalytically active metal cofactor into a customizable protein scaffold or coordinating the metal ion directly to a short and tunable amino acid (Aa) sequence, respectively. As a result, these hybrid catalysts have gained attention as valuable tools for challenging catalytic transformations, providing systems with new-to-nature properties in organic synthesis. This review offers an overview of recent advances in the development of ArMs and MPs, focusing on their application in the asymmetric carbon-carbon bond-forming reactions, such as carbene insertion, Michael additions, Friedel-Crafts and cross-coupling reactions, and cyclopropanation, underscoring the versatility of these systems in synthesizing biologically relevant compounds.
Collapse
Affiliation(s)
| | | | | | - Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy; (I.R.); (G.C.); (R.G.)
| |
Collapse
|
3
|
Chiesa E, Clerici F, Bucci R, Anastasi F, Bottiglieri M, Patrini M, Genta I, Bittner AM, Gelmi ML. Smart Electrospun Nanofibers from Short Peptidomimetics Based on Pyrrolo-pyrazole Scaffold. Biomacromolecules 2024; 25:2378-2389. [PMID: 38471518 PMCID: PMC11005010 DOI: 10.1021/acs.biomac.3c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
We prepared a small library of short peptidomimetics based on 3-pyrrolo-pyrazole carboxylate, a non-coded γ-amino acid, and glycine or alanine. The robust and eco-friendly synthetic approach adopted allows to obtain the dipeptides in two steps from commercial starting materials. This gives the possibility to shape these materials by electrospinning into micro- and nanofibers, in amounts required to be useful for coating surfaces of biomedical relevance. To promote high quality of electrospun fibers, different substitution patterns were evaluated, all for pure peptide fibers, free of any polymer or additive. The best candidate, which affords a homogeneous fibrous matrix, was prepared in larger amounts, and its biocompatibility was verified. This successful work is the first step to develop a new biomaterial able to produce pristine peptide-based nanofibers to be used as helpful component or stand-alone scaffolds for tissue engineering or for the surface modification of medical devices.
Collapse
Affiliation(s)
- Enrica Chiesa
- Department
of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Francesca Clerici
- Department
of Pharmaceutical Sciences (DISFARM), University
of Milan, via Venezian 21, I-20133 Milano, Italy
| | - Raffaella Bucci
- Department
of Pharmaceutical Sciences (DISFARM), University
of Milan, via Venezian 21, I-20133 Milano, Italy
| | - Francesco Anastasi
- Department
of Pharmaceutical Sciences (DISFARM), University
of Milan, via Venezian 21, I-20133 Milano, Italy
| | - Matteo Bottiglieri
- Department
of Pharmaceutical Sciences (DISFARM), University
of Milan, via Venezian 21, I-20133 Milano, Italy
- CIC
nanoGUNE, (BRTA) Tolosa
Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Maddalena Patrini
- Department
of Physic, University of Pavia, via Bassi 6, 27100 Pavia, Italy
| | - Ida Genta
- Department
of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Alexander M. Bittner
- CIC
nanoGUNE, (BRTA) Tolosa
Hiribidea 76, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Pl. Euskadi
5, 48009 Bilbao, Spain
| | - M. Luisa Gelmi
- Department
of Pharmaceutical Sciences (DISFARM), University
of Milan, via Venezian 21, I-20133 Milano, Italy
| |
Collapse
|
4
|
Kondrashov EV, Belovezhets LA, Shatokhina NS, Shilova AN, Kostyro YA, Markova YA, Borovskaya MK, Borovskii GB. Design of novel water-soluble isoxazole-based antimicrobial agents and evaluation of their cytotoxicity and acute toxicity. Bioorg Chem 2023; 138:106644. [PMID: 37302315 DOI: 10.1016/j.bioorg.2023.106644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
Based on the readily available 3-organyl-5-(chloromethyl)isoxazoles, a number of previously unknown water-soluble conjugates of isoxazoles with thiourea, amino acids, some secondary and tertiary amines, and thioglycolic acid were synthesized. The bacteriostatic activity of aforementioned compounds has been studied against Enterococcus durans B-603, Bacillus subtilis B-407, Rhodococcus qingshengii Ac-2784D, and Escherichia coli B-1238 microorganisms (provided by All-Russian Collection of Microorganisms, VKM). The influence of the nature of the substituents in positions 3 and 5 of the isoxazole ring on the antimicrobial activity of the obtained compounds has been determined. It is found that the highest bacteriostatic effect is observed for compounds containing 4-methoxyphenyl or 5-nitrofuran-2-yl substituents in position 3 of the isoxazole ring as well as methylene group in position 5 bearing residues of l-proline or N-Ac-l-cysteine (5a-d, MIC 0.06-2.5 µg/ml). The leading compounds showed low cytotoxicity on normal human skin fibroblast cells (NAF1nor) and low acute toxicity on mice in comparison with the well-known isoxazole-containing antibiotic oxacillin.
Collapse
Affiliation(s)
- Evgeniy V Kondrashov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Lyudmila A Belovezhets
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Nina S Shatokhina
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Alexandra N Shilova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Yana A Kostyro
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Yulia A Markova
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk 664033, Russia
| | - Marina K Borovskaya
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk 664033, Russia
| | - Gennadii B Borovskii
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk 664033, Russia
| |
Collapse
|
5
|
Vaghi F, Facchetti G, Rimoldi I, Bottiglieri M, Contini A, Gelmi ML, Bucci R. Highly efficient morpholine-based organocatalysts for the 1,4-addition reaction between aldehydes and nitroolefins: an unexploited class of catalysts. Front Chem 2023; 11:1233097. [PMID: 37638101 PMCID: PMC10451084 DOI: 10.3389/fchem.2023.1233097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Many studies have demonstrated how the pyrrolidine nucleus is more efficient than the corresponding piperidine or morpholine as organocatalysts in the condensation of aldehydes with electrophiles via enamine. Focussing on morpholine-enamines, their low reactivity is ascribed to the presence of oxygen on the ring and to the pronounced pyramidalisation of nitrogen, decreasing the nucleophilicity of the enamine. Thus, the selection of efficient morpholine organocatalysts appears to be a difficult challenge. Herein, we reported on the synthesis of new organocatalysts belonging to the class of ß-morpholine amino acids that were tested in a model reaction, i.e., the 1,4-addition reaction of aldehydes to nitroolefins. Starting from commercially available amino acids and epichlorohydrin, we designed an efficient synthesis for the aforementioned catalysts, controlling the configuration and the substitution pattern. Computational studies indeed disclosed the transition state of the reaction, explaining why, despite all the limitations of the morpholine ring for enamine catalysis, our best catalyst works efficiently, affording condensation products with excellent yields, diastereoselection and good-to-exquisite enantioselectivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, DISFARM, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Forlano N, Bucci R, Contini A, Venanzi M, Placidi E, Gelmi ML, Lettieri R, Gatto E. Non-Conventional Peptide Self-Assembly into a Conductive Supramolecular Rope. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020333. [PMID: 36678086 PMCID: PMC9867255 DOI: 10.3390/nano13020333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/27/2023]
Abstract
Structures composed of alternating α and β amino acids can give rise to peculiar secondary structural motifs, which could self-assemble into complex structures of controlled geometries. This work describes the self-assembly properties of an α,β-peptide, containing three units of syn H2-(2-F-Phe)-h-PheGly-OH, able to self-organize on surfaces into a fascinating supramolecular rope. This material was characterized by AFM, electronic conduction and fluorescence measurements. Molecular dynamics simulations showed that this hexapeptide can self-assemble into an antiparallel β-sheet layer, stabilized by intermolecular H-bonds, which, in turn, can self-assemble into many side-by-side layers, due to π-π interactions. As a matter of fact, we demonstrated that in this system, the presence of aromatic residues at the intramolecular interface promoted by the alternation of α,β-amino-acids in the primary sequence, endorses the formation of a super-secondary structure where the aromatic groups are close to each other, conferring to the system good electron conduction properties. This work demonstrates the capability and future potential of designing and fabricating distinctive nanostructures and efficient bioelectronic interfaces based on an α,β-peptide, by controlling structure and interaction processes beyond those obtained with α- or β-peptides alone.
Collapse
Affiliation(s)
- Nicola Forlano
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Mariano Venanzi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Ernesto Placidi
- Department of Physics, Sapienza University of Rome, P.le Aldo Moro 2, 00185 Rome, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Raffaella Lettieri
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Emanuela Gatto
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
7
|
Bucci R, Vaghi F, Di Lorenzo D, Anastasi F, Broggini G, Lo Presti L, Contini A, Gelmi ML. A Non‐coded β2,2‐Amino Acid with Isoxazoline Core Able to Stabilize Peptides Folding Through an Unprecedented Hydrogen Bond. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raffaella Bucci
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Scienze Farmaceutiche ITALY
| | - Francesco Vaghi
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Scienze Farmaceutiche ITALY
| | - Davide Di Lorenzo
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Scienze Farmaceutiche ITALY
| | - Francesco Anastasi
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Scienze Farmaceutiche ITALY
| | - Gianluigi Broggini
- Università degli Studi dell'Insubria Dipartimento di Scienza e Alta Tecnologia ITALY
| | - Leonardo Lo Presti
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Chimica ITALY
| | - Alessandro Contini
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Scienze Farmaceutiche ITALY
| | - Maria Luisa Gelmi
- Universita degli Studi di Milano DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Via Venezian 21 20133 Milano ITALY
| |
Collapse
|
8
|
Sathish E, Ansari AJ, Joshi G, Pandit A, Shukla M, Kumari N, Sharon A, Verma VP, Sawant DM. Pd-Catalysed [3 + 2]-cycloaddition towards the generation of bioactive bis-heterocycles/identification of COX-2 inhibitors via in silico analysis. Org Biomol Chem 2022; 20:4746-4752. [PMID: 35612901 DOI: 10.1039/d2ob00467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current research, we envisaged the synthesis of bis-heterocycles containing the dihydroisoxazole ring by [3 + 2] cycloaddition of VECs (vinyl ethylene carbonates) and nitrile oxides, assisted by a Pd catalyst. Herein we explored hydroximoyl chlorides as versatile precursors for the in situ generation of nitrile oxides that were exploited to achieve the cycloaddition reaction on a vinyl group of VECs to generate bis-heterocycles. In silico-based studies of bis-heterocycles on the cyclooxygenase (COX) enzyme displayed selective COX-2 inhibition.
Collapse
Affiliation(s)
- Elagandhula Sathish
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India.
| | - Arshad J Ansari
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, SAS Nagar-140306, Punjab, India
| | - Gaurav Joshi
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, India
| | - Akansha Pandit
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India.
| | - Monika Shukla
- Department of Chemistry, Banasthali University, Banasthali Newai-304022, Rajasthan, India.
| | - Neha Kumari
- Department of Chemistry, Birla Institution of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ashoke Sharon
- Department of Chemistry, Birla Institution of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai-304022, Rajasthan, India.
| | - Devesh M Sawant
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India.
| |
Collapse
|
9
|
Singh MK, Lakshman MK. Recent developments in the utility of saturated azaheterocycles in peptidomimetics. Org Biomol Chem 2022; 20:963-979. [PMID: 35018952 DOI: 10.1039/d1ob01329g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To a large extent, the physical and chemical properties of peptidomimetic molecules are dictated by the integrated heterocyclic scaffolds they contain. Heterocyclic moieties are introduced into a majority of peptide-mimicking molecules to modulate conformational flexibility, improve bioavailability, and fine-tune electronics, and in order to achieve potency similar to or better than that of the natural peptide ligand. This mini-review delineates recent developments, limited to the past five years, in the utility of selected saturated 3- to 6-membered heterocyclic moieties in peptidomimetic design. Also discussed is the chemistry involved in the synthesis of the azaheterocyclic scaffolds and the structural implications of the introduction of these azaheterocycles in peptide backbones as well as side chains of the peptide mimics.
Collapse
Affiliation(s)
- Manish K Singh
- Department of Science, Technology, and Mathematics, Lincoln University, 820 Chestnut Street, Jefferson City, Missouri 65101, USA.
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
10
|
Locarno S, Bucci R, Impresari E, Gelmi ML, Pellegrino S, Clerici F. Ultrashort Peptides and Gold Nanoparticles: Influence of Constrained Amino Acids on Colloidal Stability. Front Chem 2021; 9:736519. [PMID: 34660531 PMCID: PMC8517408 DOI: 10.3389/fchem.2021.736519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Poor colloidal stability of gold nanoparticles (AuNPs) in physiological environments remains one of the major limitations that contribute to their difficult translation from bench to clinic. For this reason, an active research field is the development of molecules able to hamper AuNPs aggregation tendency in physiological environments. In this context, synthetic peptides are gaining an increased interest as an alternative to the use of biomacromolecules and polymers, due to their easiness of synthesis and their profitable pharmacokinetic profile. In this work, we reported on the use of ultrashort peptides containing conformationally constrained amino acids (AAs) for the stabilization of AuNPs. A small library of non-natural self-assembled oligopeptides were synthesized and used to functionalize spherical AuNPs of 20 nm diameter, via the ligand exchange method. The aim was to investigate the role of the constrained AA, the anchor point (at C- or N-terminus) and the peptide length on their potential use as gold binding motif. Ultrashort Aib containing peptides were identified as effective tools for AuNPs colloidal stabilization. Furthermore, peptide coated AuNPs were found to be storable as powders without losing the stabilization properties once re-dispersed in water. Finally, the possibility to exploit the developed systems for binding proteins via molecular recognition was also evaluated using biotin as model.
Collapse
Affiliation(s)
- Silvia Locarno
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Milano, Italy
| | - Raffaella Bucci
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica ‘‘A. Marchesini”, Università degli Studi di Milano, Milano, Italy
| | - Elisa Impresari
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica ‘‘A. Marchesini”, Università degli Studi di Milano, Milano, Italy
| | - Maria Luisa Gelmi
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica ‘‘A. Marchesini”, Università degli Studi di Milano, Milano, Italy
| | - Sara Pellegrino
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica ‘‘A. Marchesini”, Università degli Studi di Milano, Milano, Italy
| | - Francesca Clerici
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica ‘‘A. Marchesini”, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
11
|
Bucci R, Maggioni D, Locarno S, Ferretti AM, Gelmi ML, Pellegrino S. Exploiting Ultrashort α,β-Peptides in the Colloidal Stabilization of Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11365-11373. [PMID: 34533956 DOI: 10.1021/acs.langmuir.1c01981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal gold nanoparticles (GNPs) have found wide-ranging applications in nanomedicine due to their unique optical properties, ease of preparation, and functionalization. To avoid the formation of GNP aggregates in the physiological environment, molecules such as lipids, polysaccharides, or polymers are employed as GNP coatings. Here, we present the colloidal stabilization of GNPs using ultrashort α,β-peptides containing the repeating unit of a diaryl β2,3-amino acid and characterized by an extended conformation. Differently functionalized GNPs have been characterized by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis, allowing us to define the best candidate that inhibits the aggregation of GNPs not only in water but also in mouse serum. In particular, a short tripeptide was found to be able to stabilize GNPs in physiological media over 3 months. This new system has been further capped with albumin, obtaining a material with even more colloidal stability and ability to prevent the formation of a thick protein corona in physiological media.
Collapse
Affiliation(s)
- Raffaella Bucci
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Silvia Locarno
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Anna Maria Ferretti
- Istituto di Scienze e Tecnologie Chimiche ″Giulio Natta″, Consiglio Nazionale Delle Ricerche (SCITEC-CNR), Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Maria Luisa Gelmi
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Sara Pellegrino
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
12
|
Bucci R, Foschi F, Loro C, Erba E, Gelmi ML, Pellegrino S. Fishing in the Toolbox of Cyclic Turn Mimics: a Literature Overview of the Last Decade. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raffaella Bucci
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| | - Francesca Foschi
- Dipartimento di Scienze e Alta Tecnologie,DiSAT Università degli Studi dell'Insubria Via Valleggio 9 Como 20100 Italy
| | - Camilla Loro
- Dipartimento di Scienze e Alta Tecnologie,DiSAT Università degli Studi dell'Insubria Via Valleggio 9 Como 20100 Italy
| | - Emanuela Erba
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| | - Maria Luisa Gelmi
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| | - Sara Pellegrino
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| |
Collapse
|
13
|
Bucci R, Georgilis E, Bittner AM, Gelmi ML, Clerici F. Peptide-Based Electrospun Fibers: Current Status and Emerging Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1262. [PMID: 34065019 PMCID: PMC8151459 DOI: 10.3390/nano11051262] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Electrospinning is a well-known, straightforward, and versatile technique, widely used for the preparation of fibers by electrifying a polymer solution. However, a high molecular weight is not essential for obtaining uniform electrospun fibers; in fact, the primary criterion to succeed is the presence of sufficient intermolecular interactions, which function similar to chain entanglements. Some small molecules able to self-assemble have been electrospun from solution into fibers and, among them, peptides containing both natural and non-natural amino acids are of particular relevance. Nowadays, the use of peptides for this purpose is at an early stage, but it is gaining more and more interest, and we are now witnessing the transition from basic research towards applications. Considering the novelty in the relevant processing, the aim of this review is to analyze the state of the art from the early 2000s on. Moreover, advantages and drawbacks in using peptides as the main or sole component for generating electrospun nanofibers will be discussed. Characterization techniques that are specifically targeted to the produced peptide fibers are presented.
Collapse
Affiliation(s)
- Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy; (M.L.G.); (F.C.)
| | - Evangelos Georgilis
- CIC nanoGUNE, (BRTA) Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain; (E.G.); (A.M.B.)
| | - Alexander M. Bittner
- CIC nanoGUNE, (BRTA) Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain; (E.G.); (A.M.B.)
- Ikerbasque Basque Foundation for Science, Pl. Euskadi 5, 48009 Bilbao, Spain
| | - Maria L. Gelmi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy; (M.L.G.); (F.C.)
| | - Francesca Clerici
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy; (M.L.G.); (F.C.)
| |
Collapse
|
14
|
Semeno VV, Vasylchenko VO, Vashchenko BV, Lutsenko DO, Iminov RT, Volovenko OB, Grygorenko OO. Building the Housane: Diastereoselective Synthesis and Characterization of Bicyclo[2.1.0]pentane Carboxylic Acids. J Org Chem 2020; 85:2321-2337. [PMID: 31859505 DOI: 10.1021/acs.joc.9b03044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An approach to 1,3-disubstitued bicyclo[2.1.0]pentane (housane) derivatives was developed. The method relied on lithium bis(trimethylsilyl)amide-mediated intramolecular cyclization of trisubstitued cyclopentane carboxylates bearing a leaving group (at the C-4 position) and an additional substituent (at the C-3 atom), in turn synthesized from cyclopent-3-ene carboxylate. The synthetic sequence allowed for the preparation of both cis- and trans-1,3-disubstituted housane-1-carboxylic acids in diastereoselective manner on up to 80 g scale. In particular, bicyclic γ-amino acids-γ-aminobutyric acid analogues-were synthesized. It was shown that the bicyclo[2.1.0]pentane did not significantly affect pKa of the corresponding derivatives and slightly increased their hydrophilicity (by 0.07-0.25 Log P units) as compared to cyclopentane. X-ray diffraction studies showed that cis- and trans-1,3-disubstituted housanes can be considered as flattened analogues of the corresponding cyclopentane derivatives with fixed envelope conformation of the five-membered ring.
Collapse
Affiliation(s)
- Volodymyr V Semeno
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78 , Kyiv 02094 , Ukraine
| | - Vadym O Vasylchenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78 , Kyiv 02094 , Ukraine.,National Technical University of Ukraine ″Igor Sikorsky Kyiv Polytechnic Institute″ , Prospect Peremogy 37 , Kyiv 03056 , Ukraine
| | - Bohdan V Vashchenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Volodymyrska Street 60 , Kyiv 01601 , Ukraine
| | - Dmytro O Lutsenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78 , Kyiv 02094 , Ukraine
| | - Rustam T Iminov
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78 , Kyiv 02094 , Ukraine
| | - Olesia B Volovenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78 , Kyiv 02094 , Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Volodymyrska Street 60 , Kyiv 01601 , Ukraine
| |
Collapse
|
15
|
On-resin multicomponent 1,3-dipolar cycloaddition of cyclopentanone-proline enamines and sulfonylazides as an efficient tool for the synthesis of amidino depsipeptide mimics. Amino Acids 2019; 52:15-24. [PMID: 31781906 DOI: 10.1007/s00726-019-02805-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
Depsipeptides are biologically active peptide derivatives that possess a high therapeutic interest. The development of depsipeptide mimics characterized by a chemical diversity could lead to compounds with enhanced features and activity. In this work, an on-resin multicomponent procedure for the synthesis of amidino depsipeptide mimics is described. This approach exploits a metal-free 1,3-dipolar cycloaddition of cyclopentanone-proline enamines and sulfonylazides. In this reaction, the obtained primary cycloadduct undergoes a ring opening and molecular rearrangement giving access to a linear sulfonyl amidine functionalized with both a peptide chain and a diazoalkane. The so-obtained diazo function "one pot" reacts with the carboxylic group of N-Fmoc-protected amino acids leading to amidino depsipeptide mimics possessing a C4 aliphatic chain. An important advantage of this procedure is the possibility to easily obtain amidino-functionalized derivatives that are proteolytically stable peptide bond bioisosteres. Moreover, the conformational freedom given by the alkyl chain could promote the obtainment of cyclic depsipeptide with a stabilized secondary structure as demonstrated with both in silico calculations and experimental conformational studies. Finally, labeled depsipeptide mimics can be also synthesized using a fluorescent sulfonylazide in the multicomponent reaction.
Collapse
|