1
|
Nakahata M, Hashidzume A. Density Function Theory Study on the Energy and Circular Dichroism Spectrum for Methylene-Linked Triazole Diads Depending on the Substitution Position and Conformation. Molecules 2024; 29:2931. [PMID: 38930995 PMCID: PMC11206612 DOI: 10.3390/molecules29122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Since the discovery of metal-catalyzed azide-alkyne cycloadditions, 1,2,3-triazoles have been widely used as linkers for various residues. 1,2,3-Triazole is an aromatic five-membered cyclic compound consisting of three nitrogen and two carbon atoms with large dipoles that absorb UV light. In the past decade, we have been working on the synthesis of dense triazole polymers possessing many 1,2,3-triazole residues linked through a carbon atom in their backbone as a new type of functional polymer. Recently, we reported that stereoregular dense triazole uniform oligomers exhibit a circular dichroism signal based on the chiral arrangement of two neighboring 1,2,3-triazole residues. In this study, to investigate the chiral conformation of two neighboring 1,2,3-triazole residues in stereoregular dense triazole uniform oligomers, density functional theory (DFT) calculations were performed using 1,2,3-triazole diads with different substitution positions and conformations as model compounds and compared with our previous results.
Collapse
Affiliation(s)
| | - Akihito Hashidzume
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan;
| |
Collapse
|
2
|
Laxio Arenas J, Lesma J, Ha-Duong T, Ranjan Sahoo B, Ramamoorthy A, Tonali N, Soulier JL, Halgand F, Giraud F, Crousse B, Kaffy J, Ongeri S. Composition and Conformation of Hetero- versus Homo-Fluorinated Triazolamers Influence their Activity on Islet Amyloid Polypeptide Aggregation. Chemistry 2024; 30:e202303887. [PMID: 38478740 DOI: 10.1002/chem.202303887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 04/11/2024]
Abstract
Novel fluorinated foldamers based on aminomethyl-1,4-triazolyl-difluoroacetic acid (1,4-Tz-CF2) units were synthesized and their conformational behaviour was studied by NMR and molecular dynamics. Their activity on the aggregation of the human islet amyloid polypeptide (hIAPP) amyloid protein was evaluated by fluorescence spectroscopy and mass spectrometry. The fluorine labelling of these foldamers allowed the analysis of their interaction with the target protein. We demonstrated that the preferred extended conformation of homotriazolamers of 1,4-Tz-CF2 unit increases the aggregation of hIAPP, while the hairpin-like conformation of more flexible heterotriazolamers containing two 1,4-Tz-CF2 units mixed with natural amino acids from the hIAPP sequence reduces it, and more efficiently than the parent natural peptide. The longer heterotriazolamers having three 1,4-Tz-CF2 units adopting more folded hairpin-like and ladder-like structures similar to short multi-stranded β-sheets have no effect. This work demonstrates that a good balance between the structuring and flexibility of these foldamers is necessary to allow efficient interaction with the target protein.
Collapse
Affiliation(s)
- José Laxio Arenas
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Jacopo Lesma
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Tap Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Bikash Ranjan Sahoo
- Biophysics, Department of Chemistry, Biomedical Engineering, Michigan Neuroscience Institute, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Michigan Neuroscience Institute, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nicolo Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Jean-Louis Soulier
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Frédéric Halgand
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - François Giraud
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN, CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190, Gif sur Yvette, France
| | - Benoît Crousse
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Julia Kaffy
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Sandrine Ongeri
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| |
Collapse
|
3
|
Rohila Y, Sebastian S, Ansari A, Kumar D, Mishra DK, Gupta MK. A Comprehensive Review of the Diverse Spectrum Activity of 1,2,3-Triazole-linked Isatin Hybrids. Chem Biodivers 2024; 21:e202301612. [PMID: 38332679 DOI: 10.1002/cbdv.202301612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Heterocyclic compounds containing 1,2,3-triazole and isatin as core structures have emerged as promising drug candidates due to their diverse biological activities such as anti-cancer, antifungal, antimicrobial, antitumor, anti-epileptic, antiviral, and more. The presence of 1,2,3-triazoles and isatin heterocycles in these hybrids, both individually known for their medicinal significance, has increasingly piqued the interest of drug discovery researchers, as they seek to delve deeper into their extensive pharmacological potential for enhancing therapeutic efficacy. Moreover, these hybrid compounds are synthetically accessible using readily available materials. Therefore, there is a pressing need to provide a comprehensive overview of the existing knowledge in this field, offering valuable insights to readers and paving the way for the discovery of novel 1,2,3-triazole-linked isatin hybrids with therapeutic potential.
Collapse
Affiliation(s)
- Yajat Rohila
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| | - Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| | - Azaj Ansari
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - D K Mishra
- Department of Chemistry, Shri Ramswaroop Memorial College of Engineering & Management, Lucknow, 226028, Uttar Pradesh, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| |
Collapse
|
4
|
Abstract
1,2,3-triazoles represent a functional heterocyclic core that has been at the center of modern organic chemistry since the beginning of click chemistry. Being a versatile framework, such an aromatic ring can be observed in uncountable molecules useful in medicine and photochemistry, just to name a few. This review summarizes the progress achieved in their synthesis from 2015 to today, with particular emphasis on the development of new catalytic and eco-compatible approaches. In doing so, we subdivided the report based on their degree of functionalization and, for each subparagraph, we outlined the role of the catalyst employed.
Collapse
|
5
|
Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. MATERIALS 2021; 14:ma14123217. [PMID: 34200889 PMCID: PMC8230458 DOI: 10.3390/ma14123217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Collagen fibres degradation is a complex process involving a variety of enzymes. Fibrillar collagens, namely type I, II, and III, are the most widely spread collagens in human body, e.g., they are responsible for tissue fibrillar structure and skin elasticity. Nevertheless, the hyperactivity of fibrotic process and collagen accumulation results with joints, bone, heart, lungs, kidneys or liver fibroses. Per contra, dysfunctional collagen turnover and its increased degradation leads to wound healing disruption, skin photoaging, and loss of firmness and elasticity. In this review we described the main enzymes participating in collagen degradation pathway, paying particular attention to enzymes degrading fibrillar collagen. Therefore, collagenases (MMP-1, -8, and -13), elastases, and cathepsins, together with their peptide and peptidomimetic inhibitors, are reviewed. This information, related to the design and synthesis of new inhibitors based on peptide structure, can be relevant for future research in the fields of chemistry, biology, medicine, and cosmeceuticals.
Collapse
|
6
|
Bucci R, Foschi F, Loro C, Erba E, Gelmi ML, Pellegrino S. Fishing in the Toolbox of Cyclic Turn Mimics: a Literature Overview of the Last Decade. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raffaella Bucci
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| | - Francesca Foschi
- Dipartimento di Scienze e Alta Tecnologie,DiSAT Università degli Studi dell'Insubria Via Valleggio 9 Como 20100 Italy
| | - Camilla Loro
- Dipartimento di Scienze e Alta Tecnologie,DiSAT Università degli Studi dell'Insubria Via Valleggio 9 Como 20100 Italy
| | - Emanuela Erba
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| | - Maria Luisa Gelmi
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| | - Sara Pellegrino
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| |
Collapse
|
7
|
Agouram N, El Hadrami EM, Bentama A. 1,2,3-Triazoles as Biomimetics in Peptide Science. Molecules 2021; 26:2937. [PMID: 34069302 PMCID: PMC8156386 DOI: 10.3390/molecules26102937] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
Natural peptides are an important class of chemical mediators, essential for most vital processes. What limits the potential of the use of peptides as drugs is their low bioavailability and enzymatic degradation in vivo. To overcome this limitation, the development of new molecules mimicking peptides is of great importance for the development of new biologically active molecules. Therefore, replacing the amide bond in a peptide with a heterocyclic bioisostere, such as the 1,2,3-triazole ring, can be considered an effective solution for the synthesis of biologically relevant peptidomimetics. These 1,2,3-triazoles may have an interesting biological activity, because they behave as rigid link units, which can mimic the electronic properties of amide bonds and show bioisosteric effects. Additionally, triazole can be used as a linker moiety to link peptides to other functional groups.
Collapse
Affiliation(s)
- Naima Agouram
- Laboratory of Applied Organic Chemistry, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, Immouzer Road, Fez 30050, Morocco; (E.M.E.H.); (A.B.)
| | | | | |
Collapse
|
8
|
Tonali N, Hericks L, Schröder DC, Kracker O, Krzemieniecki R, Kaffy J, Le Joncour V, Laakkonen P, Marion A, Ongeri S, Dodero VI, Sewald N. Peptidotriazolamers Inhibit Aβ(1-42) Oligomerization and Cross a Blood-Brain-Barrier Model. Chempluschem 2021; 86:840-851. [PMID: 33905181 DOI: 10.1002/cplu.202000814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/07/2021] [Indexed: 12/25/2022]
Abstract
In peptidotriazolamers every second peptide bond is replaced by a 1H-1,2,3-triazole. Such foldamers are expected to bridge the gap in molecular weight between small-molecule drugs and protein-based drugs. Amyloid β (Aβ) aggregates play an important role in Alzheimer's disease. We studied the impact of amide bond replacements by 1,4-disubstituted 1H-1,2,3-triazoles on the inhibitory activity of the aggregation "hot spots" K16 LVFF20 and G39 VVIA42 in Aβ(1-42). We found that peptidotriazolamers act as modulators of the Aβ(1-42) oligomerization. Some peptidotriazolamers are able to interfere with the formation of toxic early Aβ oligomers, depending on the position of the triazoles, which is also supported by computational studies. Preliminary in vitro results demonstrate that a highly active peptidotriazolamer is also able to cross the blood-brain-barrier.
Collapse
Affiliation(s)
- Nicolo Tonali
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany.,BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Loreen Hericks
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - David C Schröder
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Oliver Kracker
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Radosław Krzemieniecki
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Julia Kaffy
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Vadim Le Joncour
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Pirjo Laakkonen
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Veronica I Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| |
Collapse
|
9
|
da S M Forezi L, Lima CGS, Amaral AAP, Ferreira PG, de Souza MCBV, Cunha AC, de C da Silva F, Ferreira VF. Bioactive 1,2,3-Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. CHEM REC 2021; 21:2782-2807. [PMID: 33570242 DOI: 10.1002/tcr.202000185] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
The triazole heterocycle is a privileged scaffold in medicinal chemistry, since its structure is present in a large number of biologically active molecules, including several drugs currently in the market. Due to their vast applications, a wide variety of methods are described for their preparation, such as the 1,3-dipolar cycloaddition and processes involving diazo compounds and diazo transfer reactions. Considering the significant number of contributions from our research group to this chemistry in recent decades, in this account we discuss both the development of new methods for the synthesis of 1,2,3-triazoles and the preparation of new triazole-functionalized biologically active molecules using classical approaches.
Collapse
Affiliation(s)
- Luana da S M Forezi
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Carolina G S Lima
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Adriane A P Amaral
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Patricia G Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, R. Dr. Mario Vianna, 523 - Santa Rosa, 24241-000, Niterói, RJ, Brazil
| | - Maria Cecília B V de Souza
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Anna C Cunha
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Fernando de C da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, R. Dr. Mario Vianna, 523 - Santa Rosa, 24241-000, Niterói, RJ, Brazil
| |
Collapse
|
10
|
Laxio Arenas J, Xu Y, Milcent T, Van Heijenoort C, Giraud F, Ha-Duong T, Crousse B, Ongeri S. Fluorinated Triazole Foldamers: Folded or Extended Conformational Preferences. Chempluschem 2021; 86:241-251. [PMID: 33555641 DOI: 10.1002/cplu.202000791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 12/16/2022]
Abstract
The Ministère de l'Enseignement Supérieur et de la Recherche (MESR) is thanked for financial support for José Laxio Arenas. The China Scholarship Council is thanked for financial support for Yaochun Xu. The authors thank Pr. Vadim Soloshonok and TOSOH F-TECH, Inc. for the kind gift of N-terbutyl-sulfinylimine.
Collapse
Affiliation(s)
- José Laxio Arenas
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Yaochun Xu
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Thierry Milcent
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Carine Van Heijenoort
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN, CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190, Gif sur Yvette, France
| | - François Giraud
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN, CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190, Gif sur Yvette, France
| | - Tap Ha-Duong
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Benoit Crousse
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| |
Collapse
|
11
|
Anselmi M, Borbély A, Figueras E, Michalek C, Kemker I, Gentilucci L, Sewald N. Linker Hydrophilicity Modulates the Anticancer Activity of RGD-Cryptophycin Conjugates. Chemistry 2021; 27:1015-1022. [PMID: 32955139 PMCID: PMC7839693 DOI: 10.1002/chem.202003471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/02/2020] [Indexed: 12/27/2022]
Abstract
Most anticancer agents are hydrophobic and can easily penetrate the tumor cell membrane by passive diffusion. This may impede the development of highly effective and tumor-selective treatment options. A hydrophilic β-glucuronidase-cleavable linker was used to connect the highly potent antimitotic agent cryptophycin-55 glycinate with the αv β3 integrin ligand c(RGDfK). Incorporation of the self-immolative linker containing glucuronic acid results in lower cytotoxicity than that of the free payload, suggesting that hydrophilic sugar linkers can preclude passive cellular uptake. In vitro drug-release studies and cytotoxicity assays demonstrated the potential of this small molecule-drug conjugate, providing guidance for the development of therapeutics containing hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Michele Anselmi
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
- Department of Chemistry“G. Ciamician” University of Bolognavia Selmi 240126BolognaItaly
| | - Adina Borbély
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Eduard Figueras
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Carmela Michalek
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Isabell Kemker
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Luca Gentilucci
- Department of Chemistry“G. Ciamician” University of Bolognavia Selmi 240126BolognaItaly
| | - Norbert Sewald
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
12
|
Marín-Luna M, Claramunt RM, Elguero J, Alkorta I. Theoretical and Spectroscopic Characterization of API-Related Azoles in Solution and in Solid State. Curr Pharm Des 2020; 26:4847-4857. [PMID: 32811407 DOI: 10.2174/1381612826666200818212846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/27/2020] [Indexed: 12/13/2022]
Abstract
Azoles are a family of five-membered azacyclic compounds with relevant biological and pharmacological activity. Different subclasses of azoles are defined depending on the atomic arrangement and the number of nitrogen atoms present in the ring: pyrazoles, indazoles, imidazoles, benzimidazoles, triazoles, benzotriazoles, tetrazoles and pentazoles. The complete characterization of their structure and the knowledge about their crystal packing and physical and chemical properties are of vital importance for the advancement in the design of new azole-containing drugs. In this review, we report the latest recent contributions to azole chemistry, in particular, those in which theoretical studies have been performed.
Collapse
Affiliation(s)
- Marta Marín-Luna
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain
| | - Rosa M Claramunt
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Paseo Senda del Rey, 9, E-28040 Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| |
Collapse
|
13
|
Rečnik LM, Kandioller W, Mindt TL. 1,4-Disubstituted 1,2,3-Triazoles as Amide Bond Surrogates for the Stabilisation of Linear Peptides with Biological Activity. Molecules 2020; 25:E3576. [PMID: 32781656 PMCID: PMC7465391 DOI: 10.3390/molecules25163576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Peptides represent an important class of biologically active molecules with high potential for the development of diagnostic and therapeutic agents due to their structural diversity, favourable pharmacokinetic properties, and synthetic availability. However, the widespread use of peptides and conjugates thereof in clinical applications can be hampered by their low stability in vivo due to rapid degradation by endogenous proteases. A promising approach to circumvent this potential limitation includes the substitution of metabolically labile amide bonds in the peptide backbone by stable isosteric amide bond mimetics. In this review, we focus on the incorporation of 1,4-disubstituted 1,2,3-triazoles as amide bond surrogates in linear peptides with the aim to increase their stability without impacting their biological function(s). We highlight the properties of this heterocycle as a trans-amide bond surrogate and summarise approaches for the synthesis of triazole-containing peptidomimetics via the Cu(I)-catalysed azide-alkyne cycloaddition (CuAAC). The impacts of the incorporation of triazoles in the backbone of diverse peptides on their biological properties such as, e.g., blood serum stability and affinity as well as selectivity towards their respective molecular target(s) are discussed.
Collapse
Affiliation(s)
- Lisa-Maria Rečnik
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Thomas L. Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Oyewole RO, Oyebamiji AK, Semire B. Theoretical calculations of molecular descriptors for anticancer activities of 1, 2, 3-triazole-pyrimidine derivatives against gastric cancer cell line (MGC-803): DFT, QSAR and docking approaches. Heliyon 2020; 6:e03926. [PMID: 32462084 PMCID: PMC7243141 DOI: 10.1016/j.heliyon.2020.e03926] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023] Open
Abstract
This work used quantum chemical method via DFT to calculate molecular descriptors for the development of QSAR model to predict bioactivity (IC50- 50% inhibition concentration) of the selected 1, 2, 3-triazole-pyrimidine derivatives against receptor (human gastric cancer cell line, MGC-803). The selected molecular parameters were obtained by B3LYP/6-31G∗∗. QSAR model linked the molecular parameters of the studied compounds to their cytotoxicity and reproduced their observed bioactivities against MGC-803. The calculated IC50 tailored the observed IC50 and greater than standard compound, 5-fluorouracil, suggesting that the developed QSAR model reproduced the observed bioactivity. Statistical analyses (including R2, CV. R2 andR a 2 gave 0.950, 0.970 and 0.844 respectively) revealed a very good fitness. Molecular docking studies revealed the hydrogen bonding with the amino acid residues in the binding site, as well as ligand conformations which are essential feature for ligand-receptor interactions. Therefore, the methods used in this study are veritable tools that can be employed in pharmacological and medicinal chemistry researches in designing better drugs with improve potency.
Collapse
Affiliation(s)
- Rhoda Oyeladun Oyewole
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Abel Kolawole Oyebamiji
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Basic Sciences, Adeleke University, P.M.B. 250, Ede, Osun State, Nigeria
| | - Banjo Semire
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
15
|
Schilling PE, Kontaxis G, Dragosits M, Schiestl RH, Becker CFW, Maier I. Mannosylated hemagglutinin peptides bind cyanovirin-N independent of disulfide-bonds in complementary binding sites. RSC Adv 2020; 10:11079-11087. [PMID: 35495330 PMCID: PMC9050506 DOI: 10.1039/d0ra01128b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 01/11/2023] Open
Abstract
Cyanovirin-N (CV-N) has been shown to reveal broad neutralizing activity against human immunodeficiency virus (HIV) and to specifically bind Manα(1→2)Manα units exposed on various glycoproteins of enveloped viruses, such as influenza hemagglutinin (HA) and Ebola glycoprotein. Chemically synthesized dimannosylated HA peptides bound domain-swapped and dimeric CV-N with either four disulfide-bonds (Cys-Cys), or three Cys-Cys bonds and an intact fold of the high-affinity binding site at an equilibrium dissociation constant K D of 10 μM. Cys-Cys mutagenesis with ion-pairing amino-acids glutamic acid and arginine was calculated by in silico structure-based protein design and allowed for recognizing dimannose and dimannosylated peptide binding to low-affinity binding sites (K D ≈ 11 μM for one C58-C73 bond, and binding to dimannosylated peptide). In comparison, binding to HA was achieved based on one ion-pairing C58E-C73R substitution at K D = 275 nM, and K D = 5 μM for two C58E-C73R substitutions. We were utilizing a triazole bioisostere linkage to form the respective mannosylated-derivative on the HA peptide sequence of residues glutamine, glycine, and glutamic acid. Thus, mono- and dimannosylated peptides with N-terminal cysteine facilitated site-specific interactions with HA peptides, mimicking a naturally found N-linked glycosylation site on the HA head domain.
Collapse
Affiliation(s)
- Philipp E Schilling
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna Währinger Straße 38 A-1090 Vienna Austria
| | - Georg Kontaxis
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna Campus Vienna Bohrgasse 5 A-1030 Vienna Austria
| | - Martin Dragosits
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences Muthgasse 18 A-1190 Vienna Austria
| | - Robert H Schiestl
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine, University of California Los Angeles CA-90095 USA
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles 650 Charles E. Young Dr. South Los Angeles CA-90095 USA +1-310-267-2578 +1-310-267-2087
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna Währinger Straße 38 A-1090 Vienna Austria
| | - Irene Maier
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna Währinger Straße 38 A-1090 Vienna Austria
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles 650 Charles E. Young Dr. South Los Angeles CA-90095 USA +1-310-267-2578 +1-310-267-2087
| |
Collapse
|