1
|
Kanasheva N, Ukhov A, Malkov VS, Gubankov A, Sergazina S, Issabayeva MA, Mashan T, Kolpek A, Ryskaliyeva R, Bakibaev A, Yerkassov R. The Synthesis of a New Glycoluryl-Melamine-Formaldehyde Polymer under the Action of HEDP and the Investigation of the Content of Methylol Groups and Free Formaldehyde. Polymers (Basel) 2024; 16:2877. [PMID: 39458705 PMCID: PMC11511254 DOI: 10.3390/polym16202877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This study outlines a method for preparing a complex involving glycoluril and melamine (GU-ME). The structure of the resultant complex was analyzed using IR and NMR spectroscopy. In the subsequent phase, the polymer GUMEFA was derived from the resultant complex, employing hydroxyethylidene diphosphonic acid (HEDP) as a sustainable plasticizer, with a proposed chemical mechanism for its formation. The molecular weight of the resulting GUMEFA was analyzed, and the formation chemistry was proposed. GUMEFA was characterized, and its free formaldehyde and methylol group contents were investigated. It was observed that GUMEFA prepared with HEDP contained approximately 1.15-1.34 wt.% free formaldehyde and 1.56-0.54 wt.% methylol groups. These findings provide valuable insights for developing resins of different compositions and applications, thereby paving the way for producing composite materials with tailored properties.
Collapse
Affiliation(s)
- Nurdana Kanasheva
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Arthur Ukhov
- Faculty of Chemistry, National Research Tomsk State University, 634028 Tomsk, Russia
| | - Victor S. Malkov
- Faculty of Chemistry, National Research Tomsk State University, 634028 Tomsk, Russia
| | - Alexander Gubankov
- Faculty of Chemistry, National Research Tomsk State University, 634028 Tomsk, Russia
| | - Samal Sergazina
- Department of Chemistry and Biotechnology, Sh. Ualikhanov University, Kokshetau 020000, Kazakhstan
| | - Manar A. Issabayeva
- Department of Chemistry and Chemical Technologies, Toraighyrov University, Pavlodar 140008, Kazakhstan
| | - Togzhan Mashan
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Ainagul Kolpek
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Roza Ryskaliyeva
- Faculty of Chemistry and Chemical Technology, Department of General and Inorganic Chemistry, Al-Farabi Kazakh National University, Almaty 050000, Kazakhstan
| | - Abdigali Bakibaev
- Faculty of Chemistry, National Research Tomsk State University, 634028 Tomsk, Russia
| | - Rakhmetulla Yerkassov
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
2
|
Kumar M, Bhujbal SK, Kohli K, Prajapati R, Sharma BK, Sawarkar AD, Abhishek K, Bolan S, Ghosh P, Kirkham MB, Padhye LP, Pandey A, Vithanage M, Bolan N. A review on value-addition to plastic waste towards achieving a circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171106. [PMID: 38387564 DOI: 10.1016/j.scitotenv.2024.171106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Plastic and mixed plastic waste (PW) has received increased worldwide attention owing to its huge rate of production, high persistency in the environment, and unsustainable waste management practices. Therefore, sustainable PW management and upcycling approaches are imperative to achieve the objectives of the United Nations Sustainable Development Goals. Numerous recent studies have shown the application and feasibility of various PW conversion techniques to produce materials with better economic value. Within this framework, the current review provides an in-depth analysis of cutting-edge thermochemical technologies such as pyrolysis, gasification, carbonization, and photocatalysis that can be used to value plastic and mixed PW in order to produce energy and industrial chemicals. Additionally, a thorough examination of the environmental impacts of contemporary PW upcycling techniques and their commercial feasibility through life cycle assessment (LCA) and techno-economical assessment are provided in this review. Finally, this review emphasizes the opportunities and challenges accompanying with existing PW upcycling techniques and deliver recommendations for future research works.
Collapse
Affiliation(s)
- Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India.
| | - Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Kirtika Kohli
- Distillate and Heavy Oil Processing Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Ravindra Prajapati
- Prairie Research Institute-Illinois Sustainable Technology Center, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Brajendra K Sharma
- Prairie Research Institute-Illinois Sustainable Technology Center, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA; United States Department of Agriculture, Agricultural Research Service Eastern Regional Research Center Sustainable Biofuels and Co-Products Research Unit, 600 E. Mermaid Ln., Wyndmoor, PA 19038, USA
| | - Ankush D Sawarkar
- Department of Information Technology, Shri Guru Gobind Singhji Institute of Engineering and Technology (SGGSIET), Nanded, Maharashtra 431 606, India
| | - Kumar Abhishek
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Kyung Hee University, Kyung Hee Dae Ro 26, Seoul 02447, Republic of Korea; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226029, India
| | - Meththika Vithanage
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| |
Collapse
|
3
|
Stajcic I, Veljkovic F, Petrovic M, Veličkovic S, Radojevic V, Vlahović B, Stajcic A. Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey. Polymers (Basel) 2023; 15:polym15102261. [PMID: 37242836 DOI: 10.3390/polym15102261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
High performance polymers with bio-based modifiers are promising materials in terms of applications and environmental impact. In this work, raw acacia honey was used as a bio-modifier for epoxy resin, as a rich source of functional groups. The addition of honey resulted in the formation of highly stable structures that were observed in scanning electron microscopy images as separate phases at the fracture surface, which were involved in the toughening of the resin. Structural changes were investigated, revealing the formation of a new aldehyde carbonyl group. Thermal analysis confirmed the formation of products that were stable up to 600 °C, with a glass transition temperature of 228 °C. An energy-controlled impact test was performed to compare the absorbed impact energy of bio-modified epoxy containing different amounts of honey with unmodified epoxy resin. The results showed that bio-modified epoxy resin with 3 wt% of acacia honey could withstand several impacts with full recovery, while unmodified epoxy resin broke at first impact. The absorbed energy at first impact was 2.5 times higher for bio-modified epoxy resin than it was for unmodified epoxy resin. In this manner, by using simple preparation and a raw material that is abundant in nature, a novel epoxy with high thermal and impact resistance was obtained, opening a path for further research in this field.
Collapse
Affiliation(s)
- Ivana Stajcic
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Filip Veljkovic
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Milos Petrovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Suzana Veličkovic
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Vesna Radojevic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Branislav Vlahović
- Mathematics and Physics Department, North Carolina Central University, Durham, NC 27707, USA
| | - Aleksandar Stajcic
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Berne D, Caillol S, Ladmiral V, Leclerc E. Synthesis of polyester thermosets via internally catalyzed Michael-addition of methylene compounds on a 2-(trifluoromethyl)acrylate-derived building block. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Effect of Solvent on Superhydrophobicity Behavior of Tiles Coated with Epoxy/PDMS/SS. Polymers (Basel) 2022; 14:polym14122406. [PMID: 35745983 PMCID: PMC9230667 DOI: 10.3390/polym14122406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Superhydrophobic coatings are widely applied in various applications due to their water-repelling characteristics. However, producing a durable superhydrophobic coating with less harmful low surface materials and solvents remains a challenge. Therefore, the aim of this work is to study the effects of three different solvents in preparing a durable and less toxic superhydrophobic coating containing polydimethylsiloxane (PDMS), silica solution (SS), and epoxy resin (DGEBA). A simple sol-gel method was used to prepare a superhydrophobic coating, and a spray-coating technique was employed to apply the superhydrophobic coating on tile substrates. The coated tile substrates were characterized for water contact angle (WCA) and tilting angle (TA) measurements, Field-Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Among 3 types of solvent (acetone, hexane, and isopropanol), a tile sample coated with isopropanol-added solution acquires the highest water contact angle of 152 ± 2° with a tilting angle of 7 ± 2° and a surface roughness of 21.80 nm after UV curing for 24 h. The peel off test showed very good adherence of the isopropanol-added solution coating on tiles. A mechanism for reactions that occur in the best optimized solvent is proposed.
Collapse
|
6
|
Roy PS, Garnier G, Allais F, Saito K. Strategic Approach Towards Plastic Waste Valorization: Challenges and Promising Chemical Upcycling Possibilities. CHEMSUSCHEM 2021; 14:4007-4027. [PMID: 34132056 DOI: 10.1002/cssc.202100904] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Plastic waste, which is one of the major sources of pollution in the landfills and oceans, has raised global concern, primarily due to the huge production rate, high durability, and the lack of utilization of the available waste management techniques. Recycling methods are preferable to reduce the impact of plastic pollution to some extent. However, most of the recycling techniques are associated with different drawbacks, high cost and downgrading of product quality being among the notable ones. The sustainable option here is to upcycle the plastic waste to create high-value materials to compensate for the cost of production. Several upcycling techniques are constantly being investigated and explored, which is currently the only economical option to resolve the plastic waste issue. This Review provides a comprehensive insight on the promising chemical routes available for upcycling of the most widely used plastic and mixed plastic wastes. The challenges inherent to these processes, the recent advances, and the significant role of the science and research community in resolving these issues are further emphasized.
Collapse
Affiliation(s)
- Pallabi Sinha Roy
- School of Chemistry, Monash University, Clayton, 3800, VIC, Australia
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
| | - Gil Garnier
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Florent Allais
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Kei Saito
- School of Chemistry, Monash University, Clayton, 3800, VIC, Australia
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Higashi-Ichijo-Kan, Yoshida-nakaadachicho 1, Sakyo-ku, Kyoto, 606-8306, Japan
| |
Collapse
|
7
|
Hussin RB, Sharif SB, Abd Rahim SZB, Suhaimi MAB, Bin Mohd Khushairi MT, Abdellah EL-Hadj A, Shuaib NAB. The potential of metal epoxy composite (MEC) as hybrid mold inserts in rapid tooling application: a review. RAPID PROTOTYPING JOURNAL 2021; 27:1069-1100. [DOI: 10.1108/rpj-01-2020-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Purpose
Rapid tooling (RT) integrated with additive manufacturing technologies have been implemented in various sectors of the RT industry in recent years with various kinds of prototype applications, especially in the development of new products. The purpose of this study is to analyze the current application trends of RT techniques in producing hybrid mold inserts.
Design/methodology/approach
The direct and indirect RT techniques discussed in this paper are aimed at developing a hybrid mold insert using metal epoxy composite (MEC) in increasing the speed of tooling development and performance. An extensive review of the suitable development approach of hybrid mold inserts, material preparation and filler effect on physical and mechanical properties has been conducted.
Findings
Latest research studies indicate that it is possible to develop a hybrid material through the combination of different shapes/sizes of filler particles and it is expected to improve the compressive strength, thermal conductivity and consequently increasing the hybrid mold performance (cooling time and a number of molding cycles).
Research limitations/implications
The number of research studies on RT for hybrid mold inserts is still lacking as compared to research studies on conventional manufacturing technology. One of the significant limitations is on the ways to improve physical and mechanical properties due to the limited type, size and shape of materials that are currently available.
Originality/value
This review presents the related information and highlights the current gaps related to this field of study. In addition, it appraises the new formulation of MEC materials for the hybrid mold inserts in injection molding application and RT for non-metal products.
Collapse
|
8
|
Nguyen VPT, Stewart JD, Ioannou I, Allais F. Sinapic Acid and Sinapate Esters in Brassica: Innate Accumulation, Biosynthesis, Accessibility via Chemical Synthesis or Recovery From Biomass, and Biological Activities. Front Chem 2021; 9:664602. [PMID: 34055737 PMCID: PMC8161205 DOI: 10.3389/fchem.2021.664602] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Sinapic acid (SinA) and corresponding esters are secondary metabolites abundantly found in plants of Brassica family. Belonging to the family of p-hydroxycinnamic acids, SinA and its esters analogues are present in different plant parts and involved in multiple biological processes in planta. Moreover, these metabolites are also found in relatively large quantities in agro-industrial wastes. Nowadays, these metabolites are increasingly drawing attention due to their bioactivities which include antioxidant, anti-microbial, anti-cancer and UV filtering activities. As a result, these metabolites find applications in pharmaceutical, cosmetic and food industries. In this context, this article reviews innate occurrence, biosynthesis, accessibility via chemical synthesis or direct extraction from agro-industrial wastes. Biological activities of SinA and its main corresponding esters will also be discussed.
Collapse
Affiliation(s)
- V P Thinh Nguyen
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France.,Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Jon D Stewart
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Irina Ioannou
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France.,Department of Chemistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Nikafshar S, Wang J, Dunne K, Sangthonganotai P, Nejad M. Choosing the Right Lignin to Fully Replace Bisphenol A in Epoxy Resin Formulation. CHEMSUSCHEM 2021; 14:1184-1195. [PMID: 33464727 PMCID: PMC7986108 DOI: 10.1002/cssc.202002729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Indexed: 05/19/2023]
Abstract
Thirteen unmodified lignin samples from different biomass sources and isolation processes were characterized and used to entirely replace bisphenol A (BPA) in the formulation of solubilized epoxy resins using a developed novel method. The objective was to measure the reactivity of different lignins toward bio-based epichlorohydrin (ECH). The epoxy contents of various bio-based epoxidized lignins were measured by titration and 1 H NMR spectroscopy methods. A partial least square regression (PLS-R) model with 92 % fitting accuracy and 90 % prediction ability was developed to find correlations between lignin properties and their epoxy contents. The results showed that lignins with higher phenolic hydroxy content and lower molecular weights were more suitable for replacing 100 % of toxic BPA in the formulation of epoxy resins. Additionally, two epoxidized lignin samples (highest epoxy contents) cured by using a bio-based hardener (Cardolite GX-3090) were found to show comparable thermomechanical performances and thermal stabilities to a petroleum-based (DGEBA) epoxy system.
Collapse
Affiliation(s)
- Saeid Nikafshar
- Department of ForestryMichigan State UniversityEast LansingMI48824USA
| | - Jiarun Wang
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
| | - Kevin Dunne
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Prakit Sangthonganotai
- Advanced Biochemical (Thailand) Co.Ltd No. 944 Mitrtown Office Tower, 14th FloorRama 4 RoadWangmai Sub-District, Pathumwan DistrictBangkok10330Thailand
| | - Mojgan Nejad
- Department of ForestryMichigan State UniversityEast LansingMI48824USA
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
10
|
Abstract
This review examines recent strategies, challenges, and future opportunities in preparing high-performance polymeric materials from lignin and its derivable compounds.
Collapse
Affiliation(s)
- Garrett F. Bass
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
- Department of Materials Science and Engineering
| |
Collapse
|
11
|
Wan J, Zhao J, Zhang X, Fan H, Zhang J, Hu D, Jin P, Wang DY. Epoxy thermosets and materials derived from bio-based monomeric phenols: Transformations and performances. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101287] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Konuray O, Fernández-Francos X, De la Flor S, Ramis X, Serra À. The Use of Click-Type Reactions in the Preparation of Thermosets. Polymers (Basel) 2020; 12:E1084. [PMID: 32397509 PMCID: PMC7285069 DOI: 10.3390/polym12051084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Click chemistry has emerged as an effective polymerization method to obtain thermosets with enhanced properties for advanced applications. In this article, commonly used click reactions have been reviewed, highlighting their advantages in obtaining homogeneous polymer networks. The basic concepts necessary to understand network formation via click reactions, together with their main characteristics, are explained comprehensively. Some of the advanced applications of thermosets obtained by this methodology are also reviewed.
Collapse
Affiliation(s)
- Osman Konuray
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Xavier Fernández-Francos
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Xavier Ramis
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Àngels Serra
- Department of Analytical and Organic Chemistry, University Rovira i Virgili, c/ Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
13
|
Vanillin-derived epoxy monomer for synthesis of bio-based epoxy thermosets: effect of functionality on thermal, mechanical, chemical and structural properties. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01164-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Mora AS, Tayouo R, Boutevin B, David G, Caillol S. A perspective approach on the amine reactivity and the hydrogen bonds effect on epoxy-amine systems. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|