1
|
Puccini A, Liu N, Hemmer E. Lanthanide-based nanomaterials for temperature sensing in the near-infrared spectral region: illuminating progress and challenges. NANOSCALE 2024; 16:10975-10993. [PMID: 38607258 DOI: 10.1039/d4nr00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Being first proposed as a method to overcome limitations associated with conventional contact thermometers, luminescence thermometry has been extensively studied over the past two decades as a sensitive and fast approach to remote and minimally invasive thermal sensing. Herein, lanthanide (Ln)-doped nanoparticles (Ln-NPs) have been identified as particularly promising candidates, given their outstanding optical properties. Known primarily for their upconversion emission, Ln-NPs have also been recognized for their ability to be excited with and emit in the near-infrared (NIR) regions matching the NIR transparency windows. This sparked the emergence of the development of NIR-NIR Ln-NPs for a wide range of temperature-sensing applications. The shift to longer excitation and emission wavelengths resulted in increased efforts being put into developing nanothermometers for biomedical applications, however most research is still preclinical. This mini-review outlines and addresses the challenges that limit the reliability and implementation of luminescent nanothermometers to real-life applications. Through a critical look into the recent developments from the past 4 years, we highlight attempts to overcome some of the limitations associated with excitation wavelength, thermal sensitivity, calibration, as well as light-matter interactions. Strategies range from use of longer excitation wavelengths, brighter emitters through strategic core/multi-shell architectures, exploitation of host phonons, and a shift from double- to single-band ratiometric as well as lifetime-based approaches to innovative methods based on computation and machine learning. To conclude, we offer a perspective on remaining gaps and where efforts should be focused towards more robust nanothermometers allowing a shift to real-life, e.g., in vivo, applications.
Collapse
Affiliation(s)
- Abigale Puccini
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Nan Liu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Grzyb T, Martín IR, Popescu R. The use of energy looping between Tm 3+ and Er 3+ ions to obtain an intense upconversion under the 1208 nm radiation and its use in temperature sensing. NANOSCALE 2024; 16:1692-1702. [PMID: 38131190 DOI: 10.1039/d3nr04418a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The upconversion phenomenon allows for the emission of nanoparticles (NPs) under excitation with near-infrared (NIR) light. Such property is demanded in biology and medicine to detect or treat diseases such as tumours. The transparency of biological systems for NIR light is limited to three spectral ranges, called biological windows. However, the most frequently used excitation laser to obtain upconversion is out of these ranges, with a wavelength of around 975 nm. In this article, we show an alternative - Tm3+/Er3+-doped NPs that can convert 1208 nm excitation radiation, which is in the range of the 2nd biological window, to visible light within the 1st biological window. The spectroscopic properties of the core@shell NaYF4:Tm3+@NaYF4 and NaYF4:Er3+,Tm3+@NaYF4 NPs revealed a complex mechanism responsible for the observed upconversion. To explain emission in the studied NPs, we propose an energy looping mechanism: a sequence of ground state absorption, energy transfers and cross-relaxation (CR) processes between Tm3+ ions. Next, the excited Tm3+ ions transfer the absorbed energy to Er3+ ions, which results in green, red and NIR emission at 526, 546, 660, 698, 802 and 982 nm. The ratio between these bands is temperature-dependent and can be used in remote optical thermometers with high relative temperature sensitivity, up to 2.37%/°C at 57 °C. The excitation and emission properties of the studied NPs fall within 1st and 2nd biological windows, making them promising candidates for studies in biological systems.
Collapse
Affiliation(s)
- Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Inocencio R Martín
- Departamento de Fisica, Universidad de La Laguna, Instituto de Materiales y Nanotecnología, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Brites CDS, Marin R, Suta M, Carneiro Neto AN, Ximendes E, Jaque D, Carlos LD. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302749. [PMID: 37480170 DOI: 10.1002/adma.202302749] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Indexed: 07/23/2023]
Abstract
Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology.
Collapse
Affiliation(s)
- Carlos D S Brites
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Riccardo Marin
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Albano N Carneiro Neto
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Erving Ximendes
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Daniel Jaque
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Luís D Carlos
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
4
|
Wang Y, Chen B, Wang F. Overcoming thermal quenching in upconversion nanoparticles. NANOSCALE 2021; 13:3454-3462. [PMID: 33565549 DOI: 10.1039/d0nr08603g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermal quenching that is characterized by loss of light emission with increasing temperature is widely observed in luminescent materials including upconversion nanoparticles, causing problems in technological applications such as lighting, displays, and imaging. Because upconversion processes involve extensive intra-particle energy transfer that is temperature dependent, methods have been established to fight against thermal quenching in upconversion nanoparticles by engineering the energy transfer routes. In this minireview, we discuss the origin of thermal quenching and the role of energy transfer in thermal quenching. Accordingly, recent efforts in overcoming thermal quenching of upconversion are summarized.
Collapse
Affiliation(s)
- Yanze Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
5
|
Shi R, Martinez ED, Brites CDS, Carlos LD. Thermal enhancement of upconversion emission in nanocrystals: a comprehensive summary. Phys Chem Chem Phys 2021; 23:20-42. [PMID: 33305776 DOI: 10.1039/d0cp05069e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Luminescence thermal stability is a major figure of merit of lanthanide-doped nanoparticles playing an essential role in determining their potential applications in advanced optics. Unfortunately, considering the intensification of multiple electron-vibration interactions as temperature increases, luminescence thermal quenching of lanthanide-doped materials is generally considered to be inevitable. Recently, the emergence of thermally enhanced upconversion luminescence in lanthanide-doped nanoparticles seemed to challenge this stereotype, and the research on this topic rapidly aroused wide attention. While considerable efforts have been made to explore the origin of this phenomenon, the key mechanism of luminescence enhancement is still under debate. Here, to sort out the context of this intriguing finding, the reported results on this exciting topic are reviewed, and the corresponding enhancement mechanisms as proposed by different researchers are summarized. Detailed analyses are provided to evaluate the contribution of the most believed "surface-attached moisture desorption" process on the overall luminescence enhancement of lanthanide-doped nanoparticles at elevated temperatures. The impacts of other surface-related processes and shell passivation on the luminescence behaviour of the lanthanide-doped materials are also elaborated. Lack of standardization in the reported data and the absence of important experimental information, which greatly hinders the cross-checking and reanalysis of the results, is emphasized as well. On the foundation of these discussions, it is realized that the thermal-induced luminescence enhancement is a form of recovery process against the strong luminescence quenching in the system, and the enhancement degree is closely associated with the extent of luminescence loss induced by various quenching effects beforehand.
Collapse
Affiliation(s)
- Rui Shi
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
6
|
Pominova D, Proydakova V, Romanishkin I, Ryabova A, Kuznetsov S, Uvarov O, Fedorov P, Loschenov V. Temperature Sensing in the Short-Wave Infrared Spectral Region Using Core-Shell NaGdF 4:Yb 3+, Ho 3+, Er 3+@NaYF 4 Nanothermometers. NANOMATERIALS 2020; 10:nano10101992. [PMID: 33050341 PMCID: PMC7601673 DOI: 10.3390/nano10101992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
The short-wave infrared region (SWIR) is promising for deep-tissue visualization and temperature sensing due to higher penetration depth and reduced scattering of radiation. However, the strong quenching of luminescence in biological media and low thermal sensitivity of nanothermometers in this region are major drawbacks that limit their practical application. Nanoparticles doped with rare-earth ions are widely used as thermal sensors operating in the SWIR region through the luminescence intensity ratio (LIR) approach. In this study, the effect of the shell on the sensitivity of temperature determination using NaGdF4 nanoparticles doped with rare-earth ions (REI) Yb3+, Ho3+, and Er3+ coated with an inert NaYF4 shell was investigated. We found that coating the nanoparticles with a shell significantly increases the intensity of luminescence in the SWIR range, prevents water from quenching luminescence, and decreases the temperature of laser-induced heating. Thermometry in the SWIR spectral region was demonstrated using synthesized nanoparticles in dry powder and in water. The core-shell nanoparticles obtained had intense luminescence and made it possible to determine temperatures in the range of 20–40 °C. The relative thermal sensitivity of core-shell NPs was 0.68% °C−1 in water and 4.2% °C−1 in dry powder.
Collapse
|
7
|
de la Torre A, Medina-Rodríguez S, Segura JC, Fernández-Sánchez JF. Self-Referenced Multifrequency Phase-Resolved Luminescence Spectroscopy. SENSORS 2020; 20:s20195482. [PMID: 32987919 PMCID: PMC7583794 DOI: 10.3390/s20195482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Phase-resolved luminescence chemical sensors provide the analyte determination based on the estimation of the luminescence lifetime. The lifetime is estimated from an analysis of the amplitudes and/or phases of the excitation and emission signals at one or several modulation frequencies. This requires recording both the excitation signal (used to modulate the light source) and the emission signal (obtained from an optical transducer illuminated by the luminescent sensing phase). The excitation signal is conventionally used as reference, in order to obtain the modulation factor (the ratio between the emission and the excitation amplitudes) and/or the phase shift (the difference between the emission and the excitation phases) at each modulation frequency, which are used to estimate the luminescence lifetime. In this manuscript, we propose a new method providing the luminescence lifetimes (based either on amplitudes or phases) using only the emission signal (i.e., omitting the excitation signal in the procedure). We demonstrate that the luminescence lifetime can be derived from the emission signal when it contains at least two harmonics, because in this case the amplitude and phase of one of the harmonics can be used as reference. We present the theoretical formulation as well as an example of application to an oxygen measuring system. The proposed self-referenced lifetime estimation provides two practical advantages for luminescence chemical sensors. On one hand, it simplifies the instrument architecture, since only one analog-to-digital converter (for the emission signal) is necessary. On the other hand, the self-referenced estimation of the lifetime improves the robustness against degradation of the sensing phase or variations in the optical coupling, which reduces the recalibration requirements when the lifetimes are based on amplitudes.
Collapse
Affiliation(s)
- Angel de la Torre
- Department of Signal Theory, Networking and Communications, University of Granada, 18071 Granada, Spain; (A.d.l.T.); (J.C.S.)
| | | | - Jose C. Segura
- Department of Signal Theory, Networking and Communications, University of Granada, 18071 Granada, Spain; (A.d.l.T.); (J.C.S.)
| | - Jorge F. Fernández-Sánchez
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-240451
| |
Collapse
|
8
|
Mykhaylyk V, Kraus H, Zhydachevskyy Y, Tsiumra V, Luchechko A, Wagner A, Suchocki A. Multimodal Non-Contact Luminescence Thermometry with Cr-Doped Oxides. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5259. [PMID: 32942602 PMCID: PMC7570664 DOI: 10.3390/s20185259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/24/2023]
Abstract
Luminescence methods for non-contact temperature monitoring have evolved through improvements of hardware and sensor materials. Future advances in this field rely on the development of multimodal sensing capabilities of temperature probes and extend the temperature range across which they operate. The family of Cr-doped oxides appears particularly promising and we review their luminescence characteristics in light of their application in non-contact measurements of temperature over the 5-300 K range. Multimodal sensing utilizes the intensity ratio of emission lines, their wavelength shift, and the scintillation decay time constant. We carried out systematic studies of the temperature-induced changes in the luminescence of the Cr3+-doped oxides Al2O3, Ga2O3, Y3Al5O12, and YAlO3. The mechanism responsible for the temperature-dependent luminescence characteristic is discussed in terms of relevant models. It is shown that the thermally-induced processes of particle exchange, governing the dynamics of Cr3+ ion excited state populations, require low activation energy. This then translates into tangible changes of a luminescence parameter with temperature. We compare different schemes of temperature sensing and demonstrate that Ga2O3-Cr is a promising material for non-contact measurements at cryogenic temperatures. A temperature resolution better than ±1 K can be achieved by monitoring the luminescence intensity ratio (40-140 K) and decay time constant (80-300 K range).
Collapse
Affiliation(s)
| | - Hans Kraus
- Denys Wilkinson Building, Department of Physics, University of Oxford, Oxford OX1 3RH, UK;
| | - Yaroslav Zhydachevskyy
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (Y.Z.); (V.T.); (A.S.)
- Lviv Polytechnic National University, 12 Bandera, Lviv 79646, Ukraine
| | - Volodymyr Tsiumra
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (Y.Z.); (V.T.); (A.S.)
- Ivan Franko National University of Lviv, Tarnavskogo Str. 107, 79017 Lviv, Ukraine;
| | - Andriy Luchechko
- Ivan Franko National University of Lviv, Tarnavskogo Str. 107, 79017 Lviv, Ukraine;
| | - Armin Wagner
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK;
| | - Andrzej Suchocki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (Y.Z.); (V.T.); (A.S.)
- Institute of Physics, University of Bydgoszcz, Weyssenhoffa 11, 85-072 Bydgoszcz, Poland
| |
Collapse
|
9
|
Brites CDS, Kuznetsov SV, Konyushkin VA, Nakladov AN, Fedorov PP, Carlos LD. Simultaneous Measurement of the Emission Quantum Yield and Local Temperature: The Illustrative Example of SrF
2
:Yb
3+
/Er
3+
Single Crystals. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Carlos D. S. Brites
- Phantom‐g CICECO – Aveiro Institute of Materials Department of Physics Universidade de Aveiro 3810‐193 Aveiro Portugal
| | - Sergey V. Kuznetsov
- CICECO – Aveiro Institute of Materials Prokhorov General Physics Institute of the Russian Academy of Sciences 119991 Moscow Russia
| | - Vasilii A. Konyushkin
- CICECO – Aveiro Institute of Materials Prokhorov General Physics Institute of the Russian Academy of Sciences 119991 Moscow Russia
| | - Andrey N. Nakladov
- CICECO – Aveiro Institute of Materials Prokhorov General Physics Institute of the Russian Academy of Sciences 119991 Moscow Russia
| | - Pavel P. Fedorov
- CICECO – Aveiro Institute of Materials Prokhorov General Physics Institute of the Russian Academy of Sciences 119991 Moscow Russia
| | - Luís D. Carlos
- Phantom‐g CICECO – Aveiro Institute of Materials Department of Physics Universidade de Aveiro 3810‐193 Aveiro Portugal
| |
Collapse
|
10
|
Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|