1
|
Francis DV, Dahiya D, Gokhale T, Nigam PS. Sustainable packaging materials for fermented probiotic dairy or non-dairy food and beverage products: challenges and innovations. AIMS Microbiol 2024; 10:320-339. [PMID: 38919715 PMCID: PMC11194616 DOI: 10.3934/microbiol.2024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/14/2024] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
The food and beverage packaging industry has experienced remarkable growth in recent years. Particularly the requirement for appropriate packaging materials used for the sale of fermented products is boosted due to the rising acceptance of economical functional foods available to consumers on the shelves of their local supermarkets. The most popular nutraceutical foods with increased sales include natural yogurts, probiotic-rich milk, kefir, and other fermented food and beverage products. These items have mainly been produced from dairy-based or non-dairy raw materials to provide several product options for most consumers, including vegan and lactose-intolerant populations. Therefore, there is a need for an evaluation of the potential developments and prospects that characterize the growth of the food packaging industry in the global market. The article is based on a review of information from published research, encompassing current trends, emerging technologies, challenges, innovations, and sustainability initiatives for food industry packaging.
Collapse
Affiliation(s)
- Dali Vilma Francis
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, PO Box 345055 UAE
| | - Divakar Dahiya
- Wexham Park Hospital, Wexham Street, Slough SL2 4HL, UK
- Current address: Haematology and Blood Transfusion, Basingstoke & North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Trupti Gokhale
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, PO Box 345055 UAE
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
2
|
Sicard J, Barbe S, Boutrou R, Bouvier L, Delaplace G, Lashermes G, Théron L, Vitrac O, Tonda A. A primer on predictive techniques for food and bioresources transformation processes. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
| | | | | | - Laurent Bouvier
- UMET Université de Lille, CNRS, Centrale Lille, INRAE Villeneuve‐D'Ascq France
| | - Guillaume Delaplace
- UMET Université de Lille, CNRS, Centrale Lille, INRAE Villeneuve‐D'Ascq France
| | | | | | - Olivier Vitrac
- SayFood, INRAE, AgroParisTech Université Paris Saclay Massy France
| | - Alberto Tonda
- MIA‐Paris, AgroParisTech, INRAE Université Paris Saclay Paris France
| |
Collapse
|
3
|
Datta A, Nicolaï B, Vitrac O, Verboven P, Erdogdu F, Marra F, Sarghini F, Koh C. Computer-aided food engineering. NATURE FOOD 2022; 3:894-904. [PMID: 37118206 DOI: 10.1038/s43016-022-00617-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/09/2022] [Indexed: 04/30/2023]
Abstract
Computer-aided food engineering (CAFE) can reduce resource use in product, process and equipment development, improve time-to-market performance, and drive high-level innovation in food safety and quality. Yet, CAFE is challenged by the complexity and variability of food composition and structure, by the transformations food undergoes during processing and the limited availability of comprehensive mechanistic frameworks describing those transformations. Here we introduce frameworks to model food processes and predict physiochemical properties that will accelerate CAFE. We review how investments in open access, such as code sharing, and capacity-building through specialized courses could facilitate the use of CAFE in the transformation already underway in digital food systems.
Collapse
Affiliation(s)
- Ashim Datta
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Bart Nicolaï
- Biosystems Department - MeBioS Division, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Olivier Vitrac
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 0782 SayFood, Massy, France
| | - Pieter Verboven
- Biosystems Department - MeBioS Division, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ferruh Erdogdu
- Department of Food Engineering, Ankara University, Golbasi-Ankara, Turkey
| | - Francesco Marra
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Fabrizio Sarghini
- Department of Agricultural Sciences, Agricultural and Biosystems Engineering, University of Naples Federico II, Portici, Italy
| | - Chris Koh
- PepsiCo R&D, PepsiCo, Plano, TX, USA
| |
Collapse
|
4
|
Vitrac O, Nguyen PM, Hayert M. In Silico Prediction of Food Properties: A Multiscale Perspective. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.786879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several open software packages have popularized modeling and simulation strategies at the food product scale. Food processing and key digestion steps can be described in 3D using the principles of continuum mechanics. However, compared to other branches of engineering, the necessary transport, mechanical, chemical, and thermodynamic properties have been insufficiently tabulated and documented. Natural variability, accented by food evolution during processing and deconstruction, requires considering composition and structure-dependent properties. This review presents practical approaches where the premises for modeling and simulation start at a so-called “microscopic” scale where constituents or phase properties are known. The concept of microscopic or ground scale is shown to be very flexible from atoms to cellular structures. Zooming in on spatial details tends to increase the overall cost of simulations and the integration over food regions or time scales. The independence of scales facilitates the reuse of calculations and makes multiscale modeling capable of meeting food manufacturing needs. On one hand, new image-modeling strategies without equations or meshes are emerging. On the other hand, complex notions such as compositional effects, multiphase organization, and non-equilibrium thermodynamics are naturally incorporated in models without linearization or simplifications. Multiscale method’s applicability to hierarchically predict food properties is discussed with comprehensive examples relevant to food science, engineering and packaging. Entropy-driven properties such as transport and sorption are emphasized to illustrate how microscopic details bring new degrees of freedom to explore food-specific concepts such as safety, bioavailability, shelf-life and food formulation. Routes for performing spatial and temporal homogenization with and without chemical details are developed. Creating a community sharing computational codes, force fields, and generic food structures is the next step and should be encouraged. This paper provides a framework for the transfer of results from other fields and the development of methods specific to the food domain.
Collapse
|
5
|
Scarpelli F, Crispini A, Giorno E, Marchetti F, Pettinari R, Di Nicola C, De Santo MP, Fuoco E, Berardi R, Alfano P, Caputo P, Policastro D, Oliviero Rossi C, Aiello I. Preparation and Characterization of Silver(I) Ethylcellulose Thin Films as Potential Food Packaging Materials. Chempluschem 2020; 85:426-440. [PMID: 32154993 DOI: 10.1002/cplu.201900681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/19/2020] [Indexed: 12/24/2022]
Abstract
Ag(I)-containing ethylcellulose (EC) films suitable as antbacterial packaging materials have been prepared and fully characterized. Different preparation methods, including the use of green casting solvents, are proposed. The Ag(I) acylpyrazolonato complexes, [Ag(Qpy,CF3 )(L)], L=benzylimidazole (Bzim) and L=ethylimidazole (EtimH), used as active additives, display different modes of interactions with EC, depending on their structural features. A thorough investigation of the EC liquid-crystalline lyotropic phase and its changes with the introduction of silver additives, has been conducted, revealing either the inclusion of complex molecules into the inner structure of the EC matrix or their dispersion on its surface. Moreover, the bactericidal activity of the prepared Ag(I) films seems to be related to the interaction between silver additives and the polymeric EC matrix. Indeed, the EC-2b films show a particularly good performance even with a low silver content, with a relative bacterial killing of about 100 %. Tests for Ag(I) migration have been performed by using three food stimulants under two assay conditions. Low values of silver release are recorded, particularly at low concentration of silver content, in the case of all new prepared Ag(I) films.
Collapse
Affiliation(s)
- Francesca Scarpelli
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy
| | - Alessandra Crispini
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy
| | - Eugenia Giorno
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy
| | - Fabio Marchetti
- School of Science and Technology Chemistry Section, University of Camerino, Via S. Agostino 1, 62032, Camerino (MC, Italy
| | - Riccardo Pettinari
- School of Pharmacy Chemistry Section, University of Camerino, Via S. Agostino 1, 62032, Camerino (MC, Italy
| | - Corrado Di Nicola
- School of Science and Technology Chemistry Section, University of Camerino, Via S. Agostino 1, 62032, Camerino (MC, Italy
| | - Maria Penelope De Santo
- Dipartimento di Fisica, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy.,CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036, Arcavacata di Rende (CS), Italy
| | - Erica Fuoco
- Dipartimento di Fisica, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy.,CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036, Arcavacata di Rende (CS), Italy
| | - Riccardo Berardi
- TiFQLab - Centro di sperimentazione ricerca e analisi applicate alle tecnologie alimentari e dell'acqua potabile - Department DIMES, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy
| | - Pasquale Alfano
- TiFQLab - Centro di sperimentazione ricerca e analisi applicate alle tecnologie alimentari e dell'acqua potabile - Department DIMES, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy
| | - Paolino Caputo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy
| | - Debora Policastro
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy
| | - Cesare Oliviero Rossi
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy
| | - Iolinda Aiello
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy.,CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036, Arcavacata di Rende (CS), Italy.,LASCAMM CR-INSTM Unità INSTM della Calabria, Università della Calabria, 87036, Arcavacata di Rende (CS, Italy
| |
Collapse
|
6
|
Nguyen PM, Dorey S, Vitrac O. The Ubiquitous Issue of Cross-Mass Transfer: Applications to Single-Use Systems. Molecules 2019; 24:molecules24193467. [PMID: 31554295 PMCID: PMC6803905 DOI: 10.3390/molecules24193467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
The leaching of chemicals by materials has been integrated into risk management procedures of many sectors where hygiene and safety are important, including food, medical, pharmaceutical, and biotechnological applications. The approaches focus on direct contact and do not usually address the risk of cross-mass transfer of chemicals from one item or object to another and finally to the contacting phase (e.g., culture medium, biological fluids). Overpackaging systems, as well as secondary or ternary containers, are potentially large reservoirs of non-intentionally added substances (NIAS), which can affect the final risk of contamination. This study provides a comprehensive description of the cross-mass transfer phenomena for single-use bags along the chain of value and the methodology to evaluate them numerically on laminated and assembled systems. The methodology is validated on the risk of migration i) of ϵ-caprolactam originating from the polyamide 6 internal layer of the overpackaging and ii) of nine surrogate migrants with various volatilities and polarities. The effects of imperfect contacts between items and of an air gap between them are particularly discussed and interpreted as a cutoff distance depending on the considered substance. A probabilistic description is suggested to define conservative safety-margins required to manage cross-contamination and NIAS in routine.
Collapse
Affiliation(s)
| | - Samuel Dorey
- Sartorius Stedim FMT S.A.S., avenue de Jouques, CS91051, ZI des Paluds, 13781 Aubagne CEDEX, France.
| | - Olivier Vitrac
- Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, 91300 Massy, France.
| |
Collapse
|