1
|
Chu S, Li XH, Letcher RJ. Covalent adduct formation of histone with organophosphorus pesticides in vitro. Chem Biol Interact 2024; 398:111095. [PMID: 38844256 DOI: 10.1016/j.cbi.2024.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
It is established that organophosphorus pesticide (OPP) toxicity results from modification of amino acids in active sites of target proteins. OPPs can also modify unrelated target proteins such as histones and such covalent histone modifications can alter DNA-binding properties and lead to aberrant gene expression. In the present study, we report on non-enzymatic covalent modifications of calf thymus histones adducted to selected OPPs and organophosphate flame retardants (OPFRs) in vitro using a bottom-up proteomics method approach. Histones were not found to form detectable adducts with the two tested OPFRs but were avidly modified by a few of the seven OPPs that were tested in vitro. Dimethyl phosphate (or diethyl phosphate) adducts were identified on Tyr, Lys and Ser residues. Most of the dialkyl phosphate adducts were identified on Tyr residues. Methyl and ethyl modified histones were also detected. Eleven amino residues in histones showed non-enzymatic covalent methylation by exposure of dichlorvos and malathion. Our bottom-up proteomics approach showing histone-OPP adduct formation warrants future studies on the underlying mechanism of chronic illness from exposure to OPPs.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, PR China.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
2
|
Hu CW, Chang YJ, Chang WH, Cooke MS, Chen YR, Chao MR. A Novel Adductomics Workflow Incorporating FeatureHunter Software: Rapid Detection of Nucleic Acid Modifications for Studying the Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:75-89. [PMID: 38153287 PMCID: PMC11915021 DOI: 10.1021/acs.est.3c04674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Exposure to the physicochemical agents that interact with nucleic acids (NA) may lead to modification of DNA and RNA (i.e., NA modifications), which have been associated with various diseases, including cancer. The emerging field of NA adductomics aims to identify both known and unknown NA modifications, some of which may also be associated with proteins. One of the main challenges for adductomics is the processing of massive and complex data generated by high-resolution tandem mass spectrometry (HR-MS/MS). To address this, we have developed a software called "FeatureHunter", which provides the automated extraction, annotation, and classification of different types of key NA modifications based on the MS and MS/MS spectra acquired by HR-MS/MS, using a user-defined feature list. The capability and effectiveness of FeatureHunter was demonstrated by analyzing various NA modifications induced by formaldehyde or chlorambucil in mixtures of calf thymus DNA, yeast RNA and proteins, and by analyzing the NA modifications present in the pooled urines of smokers and nonsmokers. The incorporation of FeatureHunter into the NA adductomics workflow offers a powerful tool for the identification and classification of various types of NA modifications induced by reactive chemicals in complex biological samples, providing a valuable resource for studying the exposome.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, Florida 33620, United States
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
3
|
Chu S, Letcher RJ. Bottom-up proteomics analysis for adduction of the broad-spectrum herbicide atrazine to histone. Anal Bioanal Chem 2023; 415:1497-1504. [PMID: 36662240 PMCID: PMC9974708 DOI: 10.1007/s00216-023-04545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Histones are the major proteinaceous components of chromatin in eukaryotic cells and an important part of the epigenome. The broad-spectrum herbicide atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-1, 3, 5-triazine) and its metabolites are known to form protein adducts, but the formation of atrazine-histone adducts has not been studied. In this study, a bottom-up proteomics analysis method was optimized and applied to identify histone adduction by atrazine in vitro. Whole histones of calf thymus or human histone H3.3 were incubated with atrazine. After solvent-based protein precipitation, the protein was digested by trypsin/Glu-C and the resulting peptides were analyzed by high-resolution mass spectrometry using an ultra-high-performance liquid chromatograph interfaced with a quadrupole Exactive-Orbitrap mass spectrometer. The resulting tryptic/Glu-C peptide of DTNLCAIHAK from calf thymus histone H3.1 or human histone H3.3 was identified with an accurate mass shift of +179.117 Da in atrazine incubated samples. It is deduced that a chemical group with an elemental composition of C8H13N5 (179.1171 Da) from atrazine adducted with calf thymus histone H3.1 or human histone H3.3. It was confirmed by MS/MS analysis that the adduction position was at its cysteine 110 residue. Time- and concentration-dependent assays also confirmed the non-enzymatic covalent modification of histone H3.3 by atrazine in vitro. Thus, the potential exists that atrazine adduction may lead to the alteration of histones that subsequently disturbs their normal function.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
4
|
Gouveia-Fernandes S, Rodrigues A, Nunes C, Charneira C, Nunes J, Serpa J, Antunes AMM. Glycidamide and cis-2-butene-1,4-dial (BDA) as potential carcinogens and promoters of liver cancer - An in vitro study. Food Chem Toxicol 2022; 166:113251. [PMID: 35750087 DOI: 10.1016/j.fct.2022.113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 10/18/2022]
Abstract
Acrylamide and furan are environmental and food contaminants that are metabolized by cytochrome P450 2E1 (CYP2E1), giving rise to glycidamide and cis-2-butene-1,4-dial (BDA) metabolites, respectively. Both glycidamide and BDA are electrophilic species that react with nucleophilic groups, being able to introduce mutations in DNA and perform epigenetic remodeling. However, whereas these carcinogens are primarily metabolized in the liver, the carcinogenic potential of acrylamide and furan in this organ is still controversial, based on findings from experimental animal studies. With the ultimate goal of providing further insights into this issue, we explored in vitro, using a hepatocyte cell line and a hepatocellular carcinoma cell line, the putative effect of these metabolites as carcinogens and cancer promoters. Molecular alterations were investigated in cells that survive glycidamide and BDA toxicity. We observed that those cells express CD133 stemness marker, present a high proliferative capacity and display an adjusted expression profile of genes encoding enzymes involved in oxidative stress control, such as GCL-C, GSTP1, GSTA3 and CAT. These molecular changes seem to be underlined, at least in part, by epigenetic remodeling involving histone deacetylases (HDACs). Although more studies are needed, here we present more insights towards the carcinogenic capacity of glycidamide and BDA and also point out their effect in favoring hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Sofia Gouveia-Fernandes
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Armanda Rodrigues
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Carolina Nunes
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Catarina Charneira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal
| | - João Nunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal
| | - Jacinta Serpa
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal.
| |
Collapse
|
5
|
Quintero M, Blandón LM, Vidal OM, Guzman JD, Gómez-Marín JE, Patiño AD, Molina DA, Puerto-Castro GM, Gómez-León J. In vitro biological activity of extracts from marine bacteria cultures against Toxoplasma gondii and Mycobacterium tuberculosis. J Appl Microbiol 2021; 132:2705-2720. [PMID: 34856041 DOI: 10.1111/jam.15397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate the biological activity of extracts from cultures of marine bacteria against Toxoplasma gondii and Mycobacterium tuberculosis. METHODS AND RESULTS Ethyl acetate extracts obtained from seven marine bacteria were tested against T. gondii GFP-RH and M. tuberculosis H37Rv. The cytotoxicity on HFF-1 cells was measured by a microplate resazurin fluorescent approach, and the haemolytic activity was determined photometrically. The extracts from Bacillus sp. (INV FIR35 and INV FIR48) affected the tachyzoite viability. The extracts from Bacillus, Pseudoalteromonas, Streptomyces and Micromonospora exhibited effects on infection and proliferation processes of parasite. Bacillus sp. INV FIR48 extract showed an minimum inhibitory concentration value of 50 µg ml-1 against M. tuberculosis H37Rv. All the extracts exhibited relatively low toxicity to HFF-1 cells and the primary culture of erythrocytes, except Bacillus sp. INV FIR35, which decreased cell viability under 20%. Liquid chromatography coupled to mass spectrometry analysis of the most active bacterial extract Bacillus sp. INV FIR48 showed the presence of peptide metabolites related to surfactin. CONCLUSIONS The extract from culture of deep-sea Bacillus sp. INV FIR48 showed anti-T. gondii and anti-tuberculosis (TB) biological activity with low cytotoxicity. In addition, peptide metabolites were detected in the extract. SIGNIFICANCE AND IMPACT OF THE STUDY Toxoplasmosis and TB are among the most prevalent diseases worldwide, and the current treatment drugs exhibit side effects. This study confirm that marine bacteria are on hand sources of anti-infective natural products.
Collapse
Affiliation(s)
- Marynes Quintero
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program-VAR, Marine and Coastal Research Institute-INVEMAR, Santa Marta, Colombia
| | - Lina M Blandón
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program-VAR, Marine and Coastal Research Institute-INVEMAR, Santa Marta, Colombia
| | - Oscar M Vidal
- Division of Health Sciences, Medicine Department, Universidad del Norte, Barranquilla, Colombia
| | - Juan D Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Jorge E Gómez-Marín
- GEPAMOL, Center for Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia, Colombia
| | - Albert D Patiño
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program-VAR, Marine and Coastal Research Institute-INVEMAR, Santa Marta, Colombia
| | - Diego A Molina
- GEPAMOL, Center for Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia, Colombia
| | - Gloria M Puerto-Castro
- Red Nacional de Investigación Innovación y Gestión del Conocimiento en Tuberculosis, Instituto Nacional de Salud, Bogotá, Colombia
| | - Javier Gómez-León
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program-VAR, Marine and Coastal Research Institute-INVEMAR, Santa Marta, Colombia
| |
Collapse
|
6
|
Patiño AD, Montoya-Giraldo M, Quintero M, López-Parra LL, Blandón LM, Gómez-León J. Dereplication of antimicrobial biosurfactants from marine bacteria using molecular networking. Sci Rep 2021; 11:16286. [PMID: 34381106 PMCID: PMC8357792 DOI: 10.1038/s41598-021-95788-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Biosurfactants are amphiphilic surface-active molecules of microbial origin principally produced by hydrocarbon-degrading bacteria; in addition to the bioremediation properties, they can also present antimicrobial activity. The present study highlights the chemical characterization and the antimicrobial activities of biosurfactants produced by deep-sea marine bacteria from the genera Halomonas, Bacillus, Streptomyces, and Pseudomonas. The biosurfactants were extracted and chemically characterized through Chromatography TLC, FT-IR, LC/ESI-MS/MS, and a metabolic analysis was done through molecular networking. Six biosurfactants were identified by dereplication tools from GNPS and some surfactin isoforms were identified by molecular networking. The half-maximal inhibitory concentration (IC50) of biosurfactant from Halomonas sp. INV PRT125 (7.27 mg L-1) and Halomonas sp. INV PRT124 (8.92 mg L-1) were most effective against the pathogenic yeast Candida albicans ATCC 10231. For Methicillin-resistant Staphylococcus aureus ATCC 43300, the biosurfactant from Bacillus sp. INV FIR48 was the most effective with IC50 values of 25.65 mg L-1 and 21.54 mg L-1 for C. albicans, without hemolytic effect (< 1%), and non-ecotoxic effect in brine shrimp larvae (Artemia franciscana), with values under 150 mg L-1, being a biosurfactant promising for further study. The extreme environments as deep-sea can be an important source for the isolation of new biosurfactants-producing microorganisms with environmental and pharmaceutical use.
Collapse
Affiliation(s)
- Albert D Patiño
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"-INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Santa Marta, Colombia
| | - Manuela Montoya-Giraldo
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"-INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Santa Marta, Colombia
| | - Marynes Quintero
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"-INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Santa Marta, Colombia
| | - Lizbeth L López-Parra
- Grupo de Investigación en Electroquímica y Medio Ambiente (GIEMA), Universidad Santiago de Cali, Calle 5 # 62-00, Santiago de Cali, Valle del Cauca, Colombia
| | - Lina M Blandón
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"-INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Santa Marta, Colombia.
| | - Javier Gómez-León
- Marine Bioprospecting Line, Marine and Coastal Research Institute "José Benito Vives de Andréis"-INVEMAR, Calle 25 No. 2-55, Playa Salguero, Santa Marta D.T.C.H., Santa Marta, Colombia
| |
Collapse
|
7
|
Harjivan SG, Charneira C, Martins IL, Pereira SA, Espadas G, Sabidó E, Beland FA, Marques MM, Antunes AMM. Covalent Histone Modification by an Electrophilic Derivative of the Anti-HIV Drug Nevirapine. Molecules 2021; 26:1349. [PMID: 33802579 PMCID: PMC7961589 DOI: 10.3390/molecules26051349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Nevirapine (NVP), a non-nucleoside reverse transcriptase inhibitor widely used in combined antiretroviral therapy and to prevent mother-to-child transmission of the human immunodeficiency virus type 1, is associated with several adverse side effects. Using 12-mesyloxy-nevirapine, a model electrophile of the reactive metabolites derived from the NVP Phase I metabolite, 12-hydroxy-NVP, we demonstrate that the nucleophilic core and C-terminal residues of histones are targets for covalent adduct formation. We identified multiple NVP-modification sites at lysine (e.g., H2BK47, H4K32), histidine (e.g., H2BH110, H4H76), and serine (e.g., H2BS33) residues of the four histones using a mass spectrometry-based bottom-up proteomic analysis. In particular, H2BK47, H2BH110, H2AH83, and H4H76 were found to be potential hot spots for NVP incorporation. Notably, a remarkable selectivity to the imidazole ring of histidine was observed, with modification by NVP detected in three out of the 11 histidine residues of histones. This suggests that NVP-modified histidine residues of histones are prospective markers of the drug's bioactivation and/or toxicity. Importantly, NVP-derived modifications were identified at sites known to determine chromatin structure (e.g., H4H76) or that can undergo multiple types of post-translational modifications (e.g., H2BK47, H4H76). These results open new insights into the molecular mechanisms of drug-induced adverse reactions.
Collapse
Affiliation(s)
- Shrika G. Harjivan
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Catarina Charneira
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Inês L. Martins
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Sofia A. Pereira
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal;
| | - Guadalupe Espadas
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; (G.E.); (E.S.)
- Proteomics Unit, Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; (G.E.); (E.S.)
- Proteomics Unit, Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - M. Matilde Marques
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| |
Collapse
|