1
|
Italiya G, Subramanian S. Leveraging new approach methodologies: ecotoxicological modelling of endocrine disrupting chemicals to Danio rerio through machine learning and toxicity studies. Toxicol Mech Methods 2025; 35:197-213. [PMID: 39223866 DOI: 10.1080/15376516.2024.2400324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
New approach methodologies (NAMs) offer information tailored to the intended application while reducing the use of animals. NAMs aim to develop quantitative structure-activity relationship (QSAR) and quantitive-Read-Across structure-activity relationship (q-RASAR) models to predict and categorize the acute toxicity of known and unknown endocrine-disrupting chemicals (EDCs) against zebrafish. EDCs are a diverse group of toxic substances that disrupt the endocrine system of humans and animals. The q-RASAR model was constructed and verified using validation metrics (R2 = 0.886 and Q2 = 0.814) which found to be more reliable model compare to QSAR model. The substructure fingerprint was well-fitted for the classification model and it was validated using 10-fold average accuracy (Q = 86.88%), specificity (Sp = 88.89%), Matthew's correlation curve (MCC = 0.621) and receiver operating characteristics (ROC = 0.828). The dataset of unknown substances revealed that phenolphthalein (Php) exhibited a significant level of toxicity based on q-RASAR model. The docking and simulation study indicated that the computationally derived important features successfully bound to the target zebrafish sex hormone binding globulin (zfSHBG). The experimental LC50 value of 0.790 mg L-1 was very close to the predicted value of 0.763 mg L-1, which provides high confidence to the developed model.
Collapse
Affiliation(s)
- Gopal Italiya
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| | - Sangeetha Subramanian
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
2
|
Khalid H, Fareed MM, Dandekar T, Shityakov S. Calcineurin and mTOR inhibitors in kidney transplantation: integrative metamodeling on transplant survival and kidney function. Int Urol Nephrol 2024; 56:1403-1414. [PMID: 37751051 DOI: 10.1007/s11255-023-03754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/18/2023] [Indexed: 09/27/2023]
Abstract
In our study, we examined the efficacy of mTOR (mammalian target of rapamycin) inhibitors, specifically rapamycin (Rap), compared to calcineurin inhibitors (CNIs) in kidney transplantation. By conducting a comprehensive search across reputable databases (EMBASE, Scopus, PubMed, Cochrane, and Crossref), we gathered data for a six-month post-transplantation period. Our analysis revealed that mTOR inhibitor administration resulted in improved glomerular filtration rate (GFR) and serum creatinine levels. However, it is important to note that the mTOR inhibitor group had a higher incidence of acute rejection after biopsy. Through molecular modeling, we observed that Rap exhibited a superior binding affinity for mTOR compared to CNIs' binding to calcineurin, probably contributing to the transplant rejection. Our meta-analysis supports the cautious use of an optimal mTOR inhibitor in conjunction with careful consideration of clinical features when minimizing CNIs early in the transplantation process. This is because mTOR inhibitors have complementary mechanisms of action, a low nephrotoxicity profile, and favorable outcomes in serum creatinine and GFR, which contribute to improved transplant survival.
Collapse
Affiliation(s)
- Hina Khalid
- Faculty of Life Sciences, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Muhammad Mazhar Fareed
- School of Science and Engineering, Department of Computer Science, Università degli studi di Verona, Verona, Italy
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation
| |
Collapse
|
3
|
Khan H, Waqas M, Khurshid B, Ullah N, Khalid A, Abdalla AN, Alamri MA, Wadood A. Investigating the role of Sterol C24-Methyl transferase mutation on drug resistance in leishmaniasis and identifying potential inhibitors. J Biomol Struct Dyn 2023; 42:10374-10387. [PMID: 37723868 DOI: 10.1080/07391102.2023.2256879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/02/2023] [Indexed: 09/20/2023]
Abstract
Leishmaniasis is a fatal disease caused by the leishmania parasite. For the survival of the leishmania parasite, Sterol C24-Methyl Transferase (SMT) is essential which is an enzyme of the ergosterol pathway. SMT protein mutation is responsible for Amphotericin-B drug resistance in Leishmania, which is the main treatment for visceral leishmaniasis. Amphotericin-B resistance is caused by three mutated residues V131I, V321I and F72C. The underlying mechanisms and structural changes in SMT enzymes responsible for resistance due to mutation are still not well understood. In the current study, the potential mechanism of resistance due to these mutations and the structure variation of wild and mutant SMT proteins were investigated through molecular dynamics simulations and molecular docking analysis. The results showed that AmB established strong bonding interaction with wild SMT as compare to mutants SMT. The binding energy calculation showed that binding energy of AmB with mutants SMT increases as compare to the wild SMT. Further structural based virtual screening was carried out to design potential inhibitors for the mutant SMT. On the basis of structural-based virtual screening four inhibitors (SANC01057, SANC00882, SANC00414, SANC01047) were computationally identified as potential mutant SMT (F72C) inhibitors. This work provides valuable information for improved management of drug resistant Leishmaniasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huma Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz Nizwa, Oman
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Nazif Ullah
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
4
|
Santos GC, Martins LM, Bregadiolli BA, Moreno VF, Silva‐Filho LC, Silva BHST. Heterocyclic compounds as antiviral drugs: Synthesis, structure–activity relationship and traditional applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vitor Fernandes Moreno
- School of Sciences, Department of Chemistry São Paulo State University (UNESP) Bauru Brazil
| | | | | |
Collapse
|
5
|
Lautens MJ, Tan JH, Serrat X, Del Borrello S, Schertzberg MR, Fraser AG. Identification of enzymes that have helminth-specific active sites and are required for Rhodoquinone-dependent metabolism as targets for new anthelmintics. PLoS Negl Trop Dis 2021; 15:e0009991. [PMID: 34843467 PMCID: PMC8659336 DOI: 10.1371/journal.pntd.0009991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/09/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Soil transmitted helminths (STHs) are major human pathogens that infect over a billion people. Resistance to current anthelmintics is rising and new drugs are needed. Here we combine multiple approaches to find druggable targets in the anaerobic metabolic pathways STHs need to survive in their mammalian host. These require rhodoquinone (RQ), an electron carrier used by STHs and not their hosts. We identified 25 genes predicted to act in RQ-dependent metabolism including sensing hypoxia and RQ synthesis and found 9 are required. Since all 9 have mammalian orthologues, we used comparative genomics and structural modeling to identify those with active sites that differ between host and parasite. Together, we found 4 genes that are required for RQ-dependent metabolism and have different active sites. Finding these high confidence targets can open up in silico screens to identify species selective inhibitors of these enzymes as new anthelmintics.
Collapse
Affiliation(s)
- Margot J. Lautens
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - June H. Tan
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Xènia Serrat
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Andrew G. Fraser
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
Mokhtar M, Alghamdi KS, Ahmed NS, Bakhotmah D, Saleh TS. Design and green synthesis of novel quinolinone derivatives of potential anti-breast cancer activity against MCF-7 cell line targeting multi-receptor tyrosine kinases. J Enzyme Inhib Med Chem 2021; 36:1454-1471. [PMID: 34210212 PMCID: PMC8259865 DOI: 10.1080/14756366.2021.1944126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A new set of 4,6,7,8-tetrahydroquinolin-5(1H)-ones were designed as cytotoxic agents against breast cancer cell line (MCF-7) and synthesised under ultrasonic irradiation using chitosan decorated copper nanoparticles (CS/CuNPs) catalyst. The new compounds 4b, 4j, 4k, and 4e exhibited the most potent cytotoxic activity of IC50 values (0.002 − 0.004 µM) comparing to Staurosporine of IC50; 0.005 μM. The latter derivatives exhibited a promising safety profile against the normal human WI38 cells of IC50 range 0.0149 − 0.048 µM. Furthermore, the most promising cytotoxic compounds 4b, 4j were evaluated as multi-targeting agents against the RTK protein kinases; EGFR, HER-2, PDGFR-β, and VEGFR-2. Compound 4j showed promising inhibitory activity against HER-2 and PDGFR-β of IC50 values 0.17 × 10−3, 0.07 × 10−3 µM in comparison with the reference drug sorafenib of IC50; 0.28 × 10−3, 0.13 × 10−3 µM, respectively. In addition, 4j induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells.
Collapse
Affiliation(s)
- Mohamed Mokhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadijah S Alghamdi
- Chemistry Department, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Nesreen S Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Cairo,Egypt
| | - Dina Bakhotmah
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tamer S Saleh
- Department of Chemistry, University of Jeddah, College of Science, Jeddah, Saudi Arabia.,Green Chemistry Department, National Research Centre, Giza, Egypt
| |
Collapse
|
7
|
Rai H, Barik A, Singh YP, Suresh A, Singh L, Singh G, Nayak UY, Dubey VK, Modi G. Molecular docking, binding mode analysis, molecular dynamics, and prediction of ADMET/toxicity properties of selective potential antiviral agents against SARS-CoV-2 main protease: an effort toward drug repurposing to combat COVID-19. Mol Divers 2021; 25:1905-1927. [PMID: 33582935 PMCID: PMC7882058 DOI: 10.1007/s11030-021-10188-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
The importance of the main protease (Mpro) enzyme of SARS-CoV-2 in the digestion of viral polyproteins introduces Mpro as an attractive drug target for antiviral drug design. This study aims to carry out the molecular docking, molecular dynamics studies, and prediction of ADMET properties of selected potential antiviral molecules. The study provides an insight into biomolecular interactions to understand the inhibitory mechanism and the spatial orientation of the tested ligands and further, identification of key amino acid residues within the substrate-binding pocket that can be applied for structure-based drug design. In this regard, we carried out molecular docking studies of chloroquine (CQ), hydroxychloroquine (HCQ), remdesivir (RDV), GS441524, arbidol (ARB), and natural product glycyrrhizin (GA) using AutoDock 4.2 tool. To study the drug-receptor complex's stability, selected docking possesses were further subjected to molecular dynamics studies with Schrodinger software. The prediction of ADMET/toxicity properties was carried out on ADMET Prediction™. The docking studies suggested a potential role played by CYS145, HIS163, and GLU166 in the interaction of molecules within the active site of COVID-19 Mpro. In the docking studies, RDV and GA exhibited superiority in binding with the crystal structure of Mpro over the other selected molecules in this study. Spatial orientations of the molecules at the active site of Mpro exposed the significance of S1–S4 subsites and surrounding amino acid residues. Among GA and RDV, RDV showed better and stable interactions with the protein, which is the reason for the lesser RMSD values for RDV. Overall, the present in silico study indicated the direction to combat COVID-19 using FDA-approved drugs as promising agents, which do not need much toxicity studies and could also serve as starting points for lead optimization in drug discovery.
Collapse
Affiliation(s)
- Himanshu Rai
- Room # 23, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Atanu Barik
- Room # 23, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Yash Pal Singh
- Room # 23, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Lovejit Singh
- Room # 23, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Gourav Singh
- Room # 23, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,Manipal McGill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Gyan Modi
- Room # 23, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
8
|
Shityakov S, Fischer A, Su KP, Hussein AA, Dandekar T, Broscheit J. Novel Approach for Characterizing Propofol Binding Affinities to Serum Albumins from Different Species. ACS OMEGA 2020; 5:25543-25551. [PMID: 33073080 PMCID: PMC7557242 DOI: 10.1021/acsomega.0c01295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 05/09/2023]
Abstract
The interaction between the main carrier (serum albumin, SA) of endogenous and exogenous compounds in the bloodstream of different species (human, bovine, canine, rat, rabbit, and sheep) and a general anesthetic agent (propofol, PR) was investigated using an experimental technique (high-performance liquid chromatography) and computational methods (molecular docking, molecular dynamics, sequence, and phylogenetic analyses). The obtained results revealed the differences in the PR binding affinity to various homologous forms of this protein with reliable statistics (R 2 = 0.9 and p-value < 0.005), correlating with the evolutionary relationships among SAs from different species. Additionally, the protein conformational changes (root-mean-square deviation ≈ 1.0 Å) and amino acid conservation of binding sites in protein domains were detected, contributing to the SA-PR binding modes. Overall, the outcomes from this study might provide a novel methodology to assess protein-ligand interactions and to gain some interesting insights into drug pharmacokinetics and pharmacodynamics to explain its variations among different species.
Collapse
Affiliation(s)
- Sergey Shityakov
- Department
of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 40402, Taiwan
- Department
of Bioinformatics, Würzburg University, Würzburg 97074, Germany
- College
of Medicine, China Medical University, Taichung 404, Taiwan
- . Phone: +49-931-318-4550. Fax: +49-931-318-4552
| | - Anneli Fischer
- Department
of Anesthesia and Critical Care, Würzburg
University Hospital, Würzburg 97080, Germany
| | - Kuan-Pin Su
- Department
of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 40402, Taiwan
- College
of Medicine, China Medical University, Taichung 404, Taiwan
| | - Aqeel A. Hussein
- Faculty
of Dentistry, University of Al-Ameed, 56001 Karbala, Iraq
- Department
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Thomas Dandekar
- Department
of Bioinformatics, Würzburg University, Würzburg 97074, Germany
- Phone: +49 (0)931 31-84551. Fax: +49-931-318-4552
| | - Jens Broscheit
- Department
of Anesthesia and Critical Care, Würzburg
University Hospital, Würzburg 97080, Germany
| |
Collapse
|
9
|
Molecular insights into inclusion complex formation between β- and γ-cyclodextrins and rosmarinic acid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113802] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|