1
|
Kwon YK, Kim NY, Yum S, Lee H, Youn B, Lee G, Shin YM, Lee HY. Validation of an estrogen receptor dimerization(α-α/α-β/β-β) BRET-based biosensors for screening estrogenic endocrine-disrupting chemicals. Food Chem Toxicol 2025; 200:115391. [PMID: 40122509 DOI: 10.1016/j.fct.2025.115391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
We validated the reproducibility and accuracy of a previously developed assay for screening endocrine-disrupting chemicals (EDCs) based on estrogen receptor (ER) dimerization (α-α/α-β/β-β), following OECD GD34 guidelines, to assess its applicability across various laboratories. The inter- and intra-laboratory accuracy was evaluated using 22 validation substances (ICCVAM-recommended substances for validating in vitro ER-binding assays) with confirmed estrogenic activity in four independent laboratories. Intra-laboratory reproducibility for 22 chemicals was at least 95.5 % for ER α-α and β-β and 100 % for ER α-β, with mean values of 98.9 % (ER α-α), 100 % (ER α-β), and 98.9 % (ER β-β), respectively. The inter-laboratory qualitative reproducibility for ER α-α, ER α-β, and ER β-β was 100 %, 100 %, and 95.5 %, respectively. The validated results for the ER dimerization (α-α/α-β/β-β) assays were compared with the results (17 test chemicals) from the National Toxicology Program Interagency Center for Evaluation of Alternative Toxicological Methods (NICEATM), confirming the validity of the assay. The accuracies for ER α-α, α-β, β-β dimerization in cell were 88.2 %, 94.1 %, 88.2 %, respectively. Thus, ER dimerization assays demonstrated high intra- and inter-laboratory reproducibility and accuracy through this validation study. This suggests that the assay is a robust method for detecting ER dimerization within cells.
Collapse
Affiliation(s)
- Yong-Kook Kwon
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Na-Yeon Kim
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea
| | - Soomin Yum
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea; Nuclear Science Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Gunyoung Lee
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea
| | - Yeong Min Shin
- Daejeon Regional Office of Food and Drug Safety, Ministry of Food and Drug Safety, Daejeon, 35209, Republic of Korea
| | - Hye Young Lee
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea.
| |
Collapse
|
2
|
Choi G, Kang H, Suh JS, Lee H, Han K, Yoo G, Jo H, Shin YM, Kim TJ, Youn B. Novel Estrogen Receptor Dimerization BRET-Based Biosensors for Screening Estrogenic Endocrine-Disrupting Chemicals. Biomater Res 2024; 28:0010. [PMID: 38464469 PMCID: PMC10923609 DOI: 10.34133/bmr.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
The increasing prevalence of endocrine-disrupting chemicals (EDCs) in our environment is a growing concern, with numerous studies highlighting their adverse effects on the human endocrine system. Among the EDCs, estrogenic endocrine-disrupting chemicals (eEDCs) are exogenous compounds that perturb estrogenic hormone function by interfering with estrogen receptor (ER) homo (α/α, β/β) or hetero (α/β) dimerization. To date, a comprehensive screening approach for eEDCs affecting all ER dimer forms in live cells is lacking. Here, we developed ER dimerization-detecting biosensors (ERDDBs), based on bioluminescence resonance energy transfer, for dimerization detection and rapid eEDC identification. To enhance the performance of these biosensors, we determined optimal donor and acceptor locations using computational analysis. Additionally, employing HaloTag as the acceptor and incorporating the P2A peptide as a linker yielded the highest sensitivity among the prototypes. We also established stable cell lines to screen potential ER dimerization inducers among estrogen analogs (EAs). The EAs were categorized through cross-comparison of ER dimer responses, utilizing EC values derived from a standard curve established with 17β-estradiol. We successfully classified 26 of 72 EAs, identifying which ER dimerization types they induce. Overall, our study underscores the effectiveness of the optimized ERDDB for detecting ER dimerization and its applicability in screening and identifying eEDCs.
Collapse
Affiliation(s)
- Gyuho Choi
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Haksoo Lee
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Kiseok Han
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Gaeun Yoo
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Hyejin Jo
- Food Safety Risk Assessment Division,
National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Yeong Min Shin
- Food Safety Risk Assessment Division,
National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences,
Pusan National University, Busan 46241, Republic of Korea
- Institute of Systems Biology,
Pusan National University, Busan 46241, Republic of Korea
- Nuclear Science Research Institute,
Pusan National University, Busan 46241, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences,
Pusan National University, Busan 46241, Republic of Korea
- Nuclear Science Research Institute,
Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Zhang Y, Chen M, Liu T, Qin K, Fernie AR. Investigating the dynamics of protein-protein interactions in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:965-983. [PMID: 36919339 DOI: 10.1111/tpj.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 05/27/2023]
Abstract
Both stable and transient protein interactions play an important role in the complex assemblies required for the proper functioning of living cells. Several methods have been developed to monitor protein-protein interactions in plants. However, the detection of dynamic protein complexes is very challenging, with few technologies available for this purpose. Here, we developed a new platform using the plant UBIQUITIN promoter to drive transgene expression and thereby to detect protein interactions in planta. Typically, to decide which side of the protein to link the tags, the subcellular localization of the protein fused either N-terminal or C-terminal mCitrine was firstly confirmed by using eight different specific mCherry markers. Following stable or transient protein expression in plants, the protein interaction network was detected by affinity purification mass spectrometry. These interactions were subsequently confirmed by bimolecular fluorescence complementation (BiFC), bioluminescence resonance energy transfer and co-immunoprecipitation assays. The dynamics of these interactions were monitored by Förster resonance energy transfer (FRET) and split-nano luciferase, whilst the ternary protein complex association was monitored by BiFC-FRET. Using the canonical glycolytic metabolon as an example, the interaction between these enzymes was characterized under conditions that mimic physiologically relevant energy statuses.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Moxian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tieyuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Kezhen Qin
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
4
|
Beyond luciferase-luciferin system: Modification, improved imaging and biomedical application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
van den Bor J, Bergkamp ND, Anbuhl SM, Dekker F, Comez D, Perez Almeria CV, Bosma R, White CW, Kilpatrick LE, Hill SJ, Siderius M, Smit MJ, Heukers R. NanoB 2 to monitor interactions of ligands with membrane proteins by combining nanobodies and NanoBRET. CELL REPORTS METHODS 2023; 3:100422. [PMID: 37056381 PMCID: PMC10088090 DOI: 10.1016/j.crmeth.2023.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
The therapeutic potential of ligands targeting disease-associated membrane proteins is predicted by ligand-receptor binding constants, which can be determined using NanoLuciferase (NanoLuc)-based bioluminescence resonance energy transfer (NanoBRET) methods. However, the broad applicability of these methods is hampered by the restricted availability of fluorescent probes. We describe the use of antibody fragments, like nanobodies, as universal building blocks for fluorescent probes for use in NanoBRET. Our nanobody-NanoBRET (NanoB2) workflow starts with the generation of NanoLuc-tagged receptors and fluorescent nanobodies, enabling homogeneous, real-time monitoring of nanobody-receptor binding. Moreover, NanoB2 facilitates the assessment of receptor binding of unlabeled ligands in competition binding experiments. The broad significance is illustrated by the successful application of NanoB2 to different drug targets (e.g., multiple G protein-coupled receptors [GPCRs] and a receptor tyrosine kinase [RTK]) at distinct therapeutically relevant binding sites (i.e., extracellular and intracellular).
Collapse
Affiliation(s)
- Jelle van den Bor
- Receptor Biochemistry and Signaling group, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Science (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nick D. Bergkamp
- Receptor Biochemistry and Signaling group, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Science (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Stephanie M. Anbuhl
- Receptor Biochemistry and Signaling group, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Science (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- QVQ Holding B.V., Utrecht, the Netherlands
| | - Françoise Dekker
- Receptor Biochemistry and Signaling group, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Science (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Dehan Comez
- Cell Signalling Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, the Midlands, UK
| | - Claudia V. Perez Almeria
- Receptor Biochemistry and Signaling group, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Science (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Reggie Bosma
- Receptor Biochemistry and Signaling group, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Science (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Carl W. White
- Cell Signalling Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, the Midlands, UK
| | - Laura E. Kilpatrick
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, the Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Stephen J. Hill
- Cell Signalling Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, the Midlands, UK
| | - Marco Siderius
- Receptor Biochemistry and Signaling group, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Science (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Martine J. Smit
- Receptor Biochemistry and Signaling group, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Science (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Raimond Heukers
- Receptor Biochemistry and Signaling group, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Science (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- QVQ Holding B.V., Utrecht, the Netherlands
| |
Collapse
|
6
|
Xiong Y, Zhang Y, Li Z, Reza MS, Li X, Tian X, Ai HW. Engineered Amber-Emitting Nano Luciferase and Its Use for Immunobioluminescence Imaging In Vivo. J Am Chem Soc 2022; 144:14101-14111. [PMID: 35913786 PMCID: PMC9425369 DOI: 10.1021/jacs.2c02320] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The NanoLuc luciferase (NLuc) and its furimazine (FRZ) substrate have revolutionized bioluminescence (BL) assays and imaging. However, the use of the NLuc-FRZ luciferase-luciferin pair for mammalian tissue imaging is hindered by the low tissue penetration of the emitting blue photons. Here, we present the development of an NLuc mutant, QLuc, which catalyzes the oxidation of a synthetic QTZ luciferin for bright and red-shifted emission peaking at ∼585 nm. Compared to other small single-domain NLuc mutants, this amber-light-emitting luciferase exhibited improved performance for imaging deep-tissue targets in live mice. Leveraging this novel bioluminescent reporter, we further pursued in vivo immunobioluminescence imaging (immunoBLI), which used a fusion protein of a single-chain variable antibody fragment (scFv) and QLuc for molecular imaging of tumor-associated antigens in a xenograft mouse model. As one of the most red-shifted NLuc variants, we expect QLuc to find broad applications in noninvasive mammalian imaging. Moreover, the immunoBLI method complements immunofluorescence imaging and immuno-positron emission tomography (immunoPET), serving as a convenient and nonradioactive molecular imaging tool for animal models in basic and preclinical research.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yiyu Zhang
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Zefan Li
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Md Shamim Reza
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xinyu Li
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xiaodong Tian
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hui-wang Ai
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
7
|
Tian X, Zhang Y, Li X, Xiong Y, Wu T, Ai HW. A luciferase prosubstrate and a red bioluminescent calcium indicator for imaging neuronal activity in mice. Nat Commun 2022; 13:3967. [PMID: 35803917 PMCID: PMC9270435 DOI: 10.1038/s41467-022-31673-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023] Open
Abstract
Although fluorescent indicators have been broadly utilized for monitoring bioactivities, fluorescence imaging, when applied to mammals, is limited to superficial targets or requires invasive surgical procedures. Thus, there is emerging interest in developing bioluminescent indicators for noninvasive mammalian imaging. Bioluminescence imaging (BLI) of neuronal activity is highly desired but hindered by insufficient photons needed to digitalize fast brain activities. In this work, we develop a luciferase prosubstrate deliverable at an increased dose and activated in vivo by nonspecific esterase. We further engineer a bright, bioluminescent indicator with robust responsiveness to calcium ions (Ca2+) and appreciable emission above 600 nm. Integration of these advantageous components enables the imaging of the activity of neuronal ensembles in awake mice minimally invasively with excellent signal-to-background and subsecond temporal resolution. This study thus establishes a paradigm for studying brain function in health and disease.
Collapse
Affiliation(s)
- Xiaodong Tian
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yiyu Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xinyu Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ying Xiong
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Tianchen Wu
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hui-Wang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA.
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
8
|
Moore RP, Fogerson SM, Tulu US, Yu JW, Cox AH, Sican MA, Li D, Legant WR, Weigel AV, Crawford JM, Betzig E, Kiehart DP. Super-resolution microscopy reveals actomyosin dynamics in medioapical arrays. Mol Biol Cell 2022; 33:ar94. [PMID: 35544300 DOI: 10.1091/mbc.e21-11-0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Arrays of actin filaments (F-actin) near the apical surface of epithelial cells (medioapical arrays) contribute to apical constriction and morphogenesis throughout phylogeny. Here, super-resolution approaches (grazing incidence structured illumination, GI-SIM and lattice light sheet, LLSM) microscopy resolve individual, fluorescently labeled F-actin and bipolar myosin filaments that drive amnioserosa cell shape changes during dorsal closure in Drosophila. In expanded cells, F-actin and myosin form loose, apically domed meshworks at the plasma membrane. The arrays condense as cells contract, drawing the domes into the plane of the junctional belts. As condensation continues, individual filaments are no longer uniformly apparent. As cells expand, arrays of actomyosin are again resolved - some F-actin turnover likely occurs, but a large fraction of existing filaments rearrange. In morphologically isotropic cells, actin filaments are randomly oriented and during contraction, are drawn together but remain essentially randomly oriented. In anisotropic cells, largely parallel actin filaments are drawn closer to one another. Our images offer unparalleled resolution of F-actin in embryonic tissue show that medioapical arrays are tightly apposed to the plasma membrane, are continuous with meshworks of lamellar F-actin and thereby constitute modified cell cortex. In concert with other tagged array components, super-resolution imaging of live specimens will offer new understanding of cortical architecture and function. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Regan P Moore
- Biology Department, Duke University, Durham, NC, 27708, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | | | - U Serdar Tulu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Jason W Yu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Amanda H Cox
- Biology Department, Duke University, Durham, NC, 27708, USA
| | | | - Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | | | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.,Departments of Physics and Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
9
|
Oliveira Paiva AM, Friggen AH, Douwes R, Wittekoek B, Smits WK. Practical observations on the use of fluorescent reporter systems in Clostridioides difficile. Antonie van Leeuwenhoek 2022; 115:297-323. [PMID: 35039954 DOI: 10.1007/s10482-021-01691-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Fluorescence microscopy is a valuable tool to study a broad variety of bacterial cell components and dynamics thereof. For Clostridioides difficile, the fluorescent proteins CFPopt, mCherryOpt and phiLOV2.1, and the self-labelling tags SNAPCd and HaloTag, hereafter collectively referred as fluorescent systems, have been described to explore different cellular pathways. In this study, we sought to characterize previously used fluorescent systems in C. difficile cells. We performed single cell analyses using fluorescence microscopy of exponentially growing C. difficile cells harbouring different fluorescent systems, either expressing these separately in the cytosol or fused to the C-terminus of HupA, under defined conditions. We show that the intrinsic fluorescence of C. difficile cells increases during growth, independent of sigB or spo0A. However, when C. difficile cells are exposed to environmental oxygen autofluorescence is enhanced. Cytosolic overexpression of the different fluorescent systems alone, using the same expression signals, showed heterogeneous expression of the fluorescent systems. High levels of mCherryOpt were toxic for C. difficile cells limiting the applicability of this fluorophore as a transcriptional reporter. When fused to HupA, a C. difficile histone-like protein, the fluorescent systems behaved similarly and did not affect the HupA overproduction phenotype. The present study compares several commonly used fluorescent systems for application as transcriptional or translational reporters in microscopy and summarizes the limitations and key challenges for live-cell imaging of C. difficile. Due to independence of molecular oxygen and fluorescent signal, SNAPCd appears the most suitable candidate for live-cell imaging in C. difficile to date.
Collapse
Affiliation(s)
- Ana M Oliveira Paiva
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbial Cell Biology, Leiden, The Netherlands.,Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Annemieke H Friggen
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbial Cell Biology, Leiden, The Netherlands
| | - Roxanne Douwes
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert Wittekoek
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands. .,Center for Microbial Cell Biology, Leiden, The Netherlands.
| |
Collapse
|
10
|
Thirukkumaran O, Mizuno H. Single-Cell NanoBRET Imaging with Green-Range HaloTag Acceptor. Methods Mol Biol 2022; 2525:207-218. [PMID: 35836070 DOI: 10.1007/978-1-0716-2473-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioluminescence resonance energy transfer (BRET) has gained impetus to monitor protein interactions in proximity. BRET involves the energy transfer from a bioluminescent donor (luciferases) to a fluorescent acceptor. Since bioluminescence is an intrinsic phenomenon, BRET excludes the need for external illumination and serves as a powerful alternative to fluorescence-based systems. However, BRET has not been widely adopted for single-cell imaging applications, mainly due to the low signal output resulting in poor signal-to-noise ratio. In this chapter, we describe a protocol to optimize spatiotemporal BRET imaging by adopting fluorescent HaloTag acceptors, adapting cell culture conditions and microscopic setup.
Collapse
Affiliation(s)
- Ovia Thirukkumaran
- Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Hideaki Mizuno
- Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, Heverlee, Belgium.
| |
Collapse
|
11
|
Miró‐Vinyals C, Stein A, Fischer S, Ward TR, Deliz Liang A. HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye. Chembiochem 2021; 22:3398-3401. [PMID: 34609782 PMCID: PMC9298263 DOI: 10.1002/cbic.202100424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/04/2021] [Indexed: 01/21/2023]
Abstract
HaloTag is a small self-labeling protein that is frequently used for creating fluorescent reporters in living cells. The small-molecule dyes used with HaloTag are almost exclusively based on rhodamine scaffolds, which are often expensive and challenging to synthesize. Herein, we report the engineering of HaloTag for use with a chemically accessible, inexpensive fluorophore based on the dimethylamino-styrylpyridium dye. Through directed evolution, the maximum fluorogenicity and the apparent second-order bioconjugation rate constants could be improved up to 4-fold and 42-fold, respectively. One of the top variants, HT-SP5, enabled reliable imaging in mammalian cells, with a 113-fold fluorescence enhancement over the parent protein. Additionally, crystallographic characterization of selected mutants suggests the chemical origin of the fluorescent enhancement. The improved dye system offers a valuable tool for imaging and illustrates the viability of engineering self-labeling proteins for alternative fluorophores.
Collapse
Affiliation(s)
- Carla Miró‐Vinyals
- Chemistry DepartmentUniversity of BaselNCCR Molecular Systems Engineering4002BaselSwitzerland
- Institute of Chemical Science and EngineeringEPF LausanneCH C2 425, Station 61015LausanneSwitzerland
| | - Alina Stein
- Chemistry DepartmentUniversity of BaselNCCR Molecular Systems Engineering4002BaselSwitzerland
| | - Sandro Fischer
- Chemistry DepartmentUniversity of BaselNCCR Molecular Systems Engineering4002BaselSwitzerland
| | - Thomas R. Ward
- Chemistry DepartmentUniversity of BaselNCCR Molecular Systems Engineering4002BaselSwitzerland
| | - Alexandria Deliz Liang
- Chemistry DepartmentUniversity of BaselNCCR Molecular Systems Engineering4002BaselSwitzerland
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
12
|
Engineering with NanoLuc: a playground for the development of bioluminescent protein switches and sensors. Biochem Soc Trans 2021; 48:2643-2655. [PMID: 33242085 DOI: 10.1042/bst20200440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The small engineered luciferase NanoLuc has rapidly become a powerful tool in the fields of biochemistry, chemical biology, and cell biology due to its exceptional brightness and stability. The continuously expanding NanoLuc toolbox has been employed in applications ranging from biosensors to molecular and cellular imaging, and currently includes split complementation variants, engineering techniques for spectral tuning, and bioluminescence resonance energy transfer-based concepts. In this review, we provide an overview of state-of-the-art NanoLuc-based sensors and switches with a focus on the underlying protein engineering approaches. We discuss the advantages and disadvantages of various strategies with respect to sensor sensitivity, modularity, and dynamic range of the sensor and provide a perspective on future strategies and applications.
Collapse
|
13
|
Functional Imaging Using Bioluminescent Reporter Genes in Living Subjects. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 2021; 50:5668-5705. [DOI: 10.1039/d0cs01492c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioluminescent probes have hugely benefited from the input of synthetic chemistry and protein engineering. Here we review the latest applications of these probes in biotechnology and beyond, with an eye on current limitations and future directions.
Collapse
Affiliation(s)
- Aisha J. Syed
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
15
|
Bondar A, Lazar J. Optical sensors of heterotrimeric G protein signaling. FEBS J 2020; 288:2570-2584. [DOI: 10.1111/febs.15655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Alexey Bondar
- Center for Nanobiology and Structural Biology Institute of Microbiology of the Czech Academy of Sciences Nove Hrady Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
- Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
| | - Josef Lazar
- Center for Nanobiology and Structural Biology Institute of Microbiology of the Czech Academy of Sciences Nove Hrady Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
16
|
Nowak RP, Jones LH. Target Validation Using PROTACs: Applying the Four Pillars Framework. SLAS DISCOVERY 2020; 26:474-483. [PMID: 33334221 DOI: 10.1177/2472555220979584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional compounds that recruit the E3 ubiquitin ligase machinery to proteins of interest, resulting in their ubiquitination and subsequent proteasomal degradation. Targeted protein degradation has generated considerable interest in drug discovery because inhibition of one particular function of a protein often does not deliver the therapeutic efficacy that results from whole-protein depletion. However, the physicochemistry and intrinsically complex pharmacology of PROTACs present challenges, particularly for the development of orally bioavailable drugs. Here we describe the application of a translational pharmacology framework (called the four pillars) to expedite PROTAC development by informing pharmacokinetic-pharmacodynamic (PKPD) understanding and helping elucidate structure-activity relationships. Experimental methods are reviewed that help illuminate exposure of the drug or probe at the site of action (pillar 1) and engagement of its target(s) (pillar 2) that drive functional pharmacological effects (pillar 3) resulting in modulation of a relevant phenotype (pillar 4). We hope the guidance will be useful to those developing targeted protein degraders and help establish PROTAC molecules as robust target validation chemical probes.
Collapse
Affiliation(s)
- Radosław P Nowak
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
17
|
Krasitskaya VV, Bashmakova EE, Frank LA. Coelenterazine-Dependent Luciferases as a Powerful Analytical Tool for Research and Biomedical Applications. Int J Mol Sci 2020; 21:E7465. [PMID: 33050422 PMCID: PMC7590018 DOI: 10.3390/ijms21207465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
: The functioning of bioluminescent systems in most of the known marine organisms is based on the oxidation reaction of the same substrate-coelenterazine (CTZ), catalyzed by luciferase. Despite the diversity in structures and the functioning mechanisms, these enzymes can be united into a common group called CTZ-dependent luciferases. Among these, there are two sharply different types of the system organization-Ca2+-regulated photoproteins and luciferases themselves that function in accordance with the classical enzyme-substrate kinetics. Along with deep and comprehensive fundamental research on these systems, approaches and methods of their practical use as highly sensitive reporters in analytics have been developed. The research aiming at the creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led to the development of new experimental analytical methods based on them. The commercial availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important when choosing them by first-time-users. The development of analytical methods based on these bioluminescent systems is currently booming. The bioluminescent systems under consideration were successfully applied in various biological research areas, which confirms them to be a powerful analytical tool. In this review, we consider the main directions, results, and achievements in research involving these luciferases.
Collapse
Affiliation(s)
- Vasilisa V. Krasitskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Eugenia E. Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Ludmila A. Frank
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
18
|
Weihs F, Wang J, Pfleger KDG, Dacres H. Experimental determination of the bioluminescence resonance energy transfer (BRET) Förster distances of NanoBRET and red-shifted BRET pairs. Anal Chim Acta X 2020; 6:100059. [PMID: 33392495 PMCID: PMC7772631 DOI: 10.1016/j.acax.2020.100059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 01/07/2023] Open
Abstract
Bioluminescence Resonance Energy Transfer (BRET) is widely applied to study protein-protein interactions, as well as increasingly to monitor both ligand binding and molecular rearrangements. The Förster distance (R0) describes the physical distance between the two chromophores at which 50% of the maximal energy transfer occurs and it depends on the choice of RET components. R0 can be experimentally determined using flexible peptide linkers of known lengths to separate the two chromophores. Knowledge of the R0 helps to inform on the choice of BRET system. For example, we have previously shown that BRET2 exhibits the largest R0 to date for any genetically encoded RET pair, which may be advantageous for investigating large macromolecular complexes if its issues of low and fast-decaying bioluminescence signal can be accommodated. In this study we have determined R0 for a range of bright and red-shifted BRET pairs, including NanoBRET with tetramethylrhodamine (TMR), non-chloro TOM (NCT), mCherry or Venus as acceptor, and BRET6, a red-shifted BRET2-like system. This study revealed R0 values of 6.15 nm and 6.94 nm for NanoBRET using TMR or NCT as acceptor ligands, respectively. R0 was 5.43 nm for NanoLuc-mCherry, 5.59 nm for NanoLuc-Venus and 5.47 nm for BRET6. This extends the palette of available BRET Förster distances, to give researchers a better-informed choice when considering BRET systems and points towards NanoBRET with NCT as a good alternative to BRET2 as an analysis tool for large macromolecular complexes. Experimental determination of Förster distances (R0) for commonly applied BRET pairs. Determination of R0 for NanoBRET with Venus, mCherry and HaloTag (TMR, NCT). Determination of R0 for BRET6. NanoLuc-HaloTag (NCT) exhibits the second largest R0 of any genetically encoded system.
Collapse
Affiliation(s)
- Felix Weihs
- CSIRO Health & Biosecurity, Parkville, 343 Royal Parade, Melbourne, VIC, 3030, Australia
| | - Jian Wang
- CSIRO Health & Biosecurity, Canberra, ACT, 2601, Australia
| | - Kevin D G Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.,Dimerix Limited, Nedlands, WA, Australia
| | - Helen Dacres
- CSIRO Health & Biosecurity, Food Innovation Centre, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| |
Collapse
|
19
|
Love AC, Prescher JA. Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology. Cell Chem Biol 2020; 27:904-920. [PMID: 32795417 PMCID: PMC7472846 DOI: 10.1016/j.chembiol.2020.07.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
Bioluminescence has long been used to image biological processes in vivo. This technology features luciferase enzymes and luciferin small molecules that produce visible light. Bioluminescent photons can be detected in tissues and live organisms, enabling sensitive and noninvasive readouts on physiological function. Traditional applications have focused on tracking cells and gene expression patterns, but new probes are pushing the frontiers of what can be visualized. The past few years have also seen the merger of bioluminescence with optogenetic platforms. Luciferase-luciferin reactions can drive light-activatable proteins, ultimately triggering signal transduction and other downstream events. This review highlights these and other recent advances in bioluminescence technology, with an emphasis on tool development. We showcase how new luciferins and engineered luciferases are expanding the scope of optical imaging. We also highlight how bioluminescent systems are being leveraged not just for sensing-but also controlling-biological processes.
Collapse
Affiliation(s)
- Anna C Love
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Koveal D, Díaz-García CM, Yellen G. Fluorescent Biosensors for Neuronal Metabolism and the Challenges of Quantitation. Curr Opin Neurobiol 2020; 63:111-121. [PMID: 32559637 PMCID: PMC7646541 DOI: 10.1016/j.conb.2020.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 01/08/2023]
Abstract
Over the past decade, genetically encoded fluorescent biosensors that report metabolic changes have become valuable tools for understanding brain metabolism. These sensors have been targeted to specific brain regions and cell types in different organisms to track multiple metabolic processes at single cell (and subcellular) resolution. Here, we review genetically encoded biosensors used to study metabolism in the brain. We particularly focus on the principles needed to use these sensors quantitatively while avoiding false inferences from variations in sensor fluorescence that arise from differences in expression level or environmental influences such as pH or temperature.
Collapse
Affiliation(s)
- Dorothy Koveal
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|