1
|
Zhang L, Zhang Y. Unveiling the impact of the fluorophore pyrrole, indole, furan, benzofuran, thiophene, benzothiophene, and pyrene attachments on the C7 atom of the isomorphic fluorescent thieno-guanine: A theoretical investigation. J Mol Graph Model 2025; 137:108999. [PMID: 40058267 DOI: 10.1016/j.jmgm.2025.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025]
Abstract
Thieno-guanine (thG) is a prominent emissive surrogate of natural guanine (G), which almost perfectly mimics G in nucleic duplexes. In this paper, to widen the utility of thG, the C7 attachment effects by aromatic pyrrole, indole, furan, benzofuran, thiophene, benzothiophene, and pyrene on the structural, electronic, and photophysical properties of thG were theoretically examined by using the density functional theory (DFT) and the time-dependent DFT (TD-DFT). Calculations were performed employing the hybrid B3LYP and the long-range corrected CAM-B3LYP density functionals in combination with the 6-311++G(d, p) basis set. Rigid scan calculations and optimizations were performed to obtain the most stable rotamers, and totally 14 bases (including thG) were studied. The hole-electron theory and the interfragment charge transfer (IFCT) method were applied to reveal the intrinsic characteristics of the low-lying electron excitation processes. In water solution, all the S1 states of the thG-derivatives are highly allowed ππ∗ states dominated by HOMO (L)→LUMO (L) with some charges (0.028-0.193 e) been transferred from the introduced groups to the thG-moiety. The introduced groups can tune the photophysics of thG resulting in improved fluorescent properties, including visible excitation and emission wavelengths, greater absorption and emission intensities (oscillator strengths), and larger Stokes shifts. In water solution, all substituents display fluorescence wavelength longer than 500 nm and the Stokes shifts are larger than 100 nm. Also examined are the effects of base pairing with cytosine (C), and it was revealed that the S1 states of all the studied base pairs (totally 14) are local excitations of the thG-derivatives. Both the S1 state excitation energies and the fluorescence wavelengths are red-shifted to some extent after base pair with C, with a concomitantly decrease of the corresponding oscillator strength.
Collapse
Affiliation(s)
- Laibin Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China.
| | - Yaping Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China
| |
Collapse
|
2
|
Liu Y, Wang T, Wang W. Photopharmacology and photoresponsive drug delivery. Chem Soc Rev 2025. [PMID: 40309857 DOI: 10.1039/d5cs00125k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Light serves as an excellent external stimulus due to its high spatial and temporal resolution. The use of light to regulate biological processes has evolved into a vibrant field over the past decade. Employing light on chemical substances such as bioactive molecules and drug delivery systems offers a promising therapeutic approach to achieve precise control over biological processes. In this review, we provide an overview of the advancements in optochemical technologies for controlling bioactive molecules (photopharmacology) and drug delivery systems (photoresponsive drug delivery), with an emphasis on their relationship and biomedical applications. Gaining a deeper understanding of the underlying mechanisms and emerging research will facilitate the development of optochemically controlled bioactive molecules and photoresponsive drug delivery systems, further enhancing light technologies in biomedical applications.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Tianyi Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Hori A, Konishi GI. Trifluoroacetyl-Substituted D-π-A Fluorophores: Design Strategies for Strong Solvatochromism and Giga Stokes Shifts. Chem Asian J 2025:e202500485. [PMID: 40305138 DOI: 10.1002/asia.202500485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
Solvatochromic fluorophores, widely employed in various analytical applications such as environmentally responsive dyes, typically feature a donor-π-acceptor (D-π-A) structure. Most recently, Klymchenko and we independently designed D-π-A fluorophores with a strong acceptor, trifluoroacetyl group, to achieve strong fluorescent solvatochromism and reported its application to membrane analysis (Klymchenko et al. Anal. Chem. 2024, 96, 13242) and molecular thermometer (Konishi et al. J. Am. Chem. Soc. 2025, 147, 9953), respectively. However, these reports have only considered a few π-electron donors including dialkylamines. There is not enough scope for solvatochromic fluorophores that take advantage of the properties of the trifluoroacetyl group. In this study, we systematically investigated the fluorescent properties of the π-conjugated aromatic skeleton of D-π-A with trifluoroacetyl groups. The relationship between dye structure and properties such as absorption, fluorescence, and quantum yield were clarified, and a molecular design strategy for fluorophores that exhibit the desired properties was established. Moreover, fluorescence quenching can occur depending on solvent selection or molecular structure. Moreover, this study provides insightful analysis of trifluoroacetyl-based fluorophores design strategy, emphasizing their prospective as strong but underused acceptor units for next fluorophore development.
Collapse
Affiliation(s)
- Alto Hori
- Department of Chemical Science and Engineering, Institute of Science Tokyo, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Gen-Ichi Konishi
- Department of Chemical Science and Engineering, Institute of Science Tokyo, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
4
|
Regan KT, Pounder A, Johnson RE, Murray MT, Glowacki HX, Wetmore SD, Manderville RA. Modular access to nucleobase GFP-surrogates: pH-responsive smart probes for ratiometric nucleic acid diagnostics. Chem Sci 2025; 16:6468-6479. [PMID: 40103717 PMCID: PMC11912499 DOI: 10.1039/d4sc07994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
We have utilized a modular on-strand aldol approach to synthesize chalcone-based fluorescent molecular rotors (FMRs) bearing phenolic oxygen donors that mimic the natural tyrosine (Tyr66) chromophore 4-hydroxybenzylidene-imidazolinone (HBI) within green fluorescent proteins (GFPs). Leveraging the FMRs' propensity to undergo non-radiative decay via twisted intramolecular charge transfer upon excitation within certain microenvironments, we have addressed the longstanding issues of poor brightness (ε max × Φ fl) and weak turn-on responses for GFP-surrogates within nucleic acids. To demonstrate its potential and lay the groundwork for future applications, these FMRs were incorporated into NarI12 and TBA15 oligonucleotides with canonical (A, C, T, G) or locked nucleic acids (LNAs) (TL, AL) as flanking bases. The resulting duplexes and G-quadruplexes (GQs) were studied using fluorescence spectroscopy, molecular dynamics simulations, and quantum mechanical calculations, yielding a comprehensive understanding of their structural and photophysical properties in DNA, DNA : RNA, and GQ contexts. Electron-rich chalcones favor neutral phenol excitation (ROH) to afford both phenol (ROH*) and phenolate (RO-*) emission, with the latter generated through an intermolecular excited-state proton transfer process, while electron-deficient chalcones serve as ratiometric excitation indicators, due to their photoacidity. The surrogates display strong turn-on responses (up to 154-fold) in a GQ → duplex topology switch with flanked LNAs, giving Φ fl up to 0.58 and molar brightness ∼ 15 000 cm-1 M-1 in the duplex. By synergizing the NA sequence and probe, we achieve a switchable ON-to-OFF photoinduced electron transfer, resulting in a 134-fold turn-on emission response to pH. Our findings are the first to optimize the performance of GFP-surrogates as internal nucleobase replacements and suggest multiple ways in which they may be useful tools for NA diagnostics.
Collapse
Affiliation(s)
- Keenan T Regan
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Austin Pounder
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Ryan E Johnson
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Makay T Murray
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Hannah X Glowacki
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Richard A Manderville
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
5
|
Yadav R, Das S, Mukherjee M, Mukherjee S. Probing the nucleobase-specific binding interaction of hydroxychloroquine sulfate with RNA and subsequent sequestration by a water-soluble molecular basket. Phys Chem Chem Phys 2025; 27:7365-7374. [PMID: 40125860 DOI: 10.1039/d4cp04687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A thorough understanding of the binding interactions of small molecules with genetic materials of the cell (DNA/RNA) has a persistent importance in pharmaceutical industries for the development of new drugs for treating various life-threatening ailments. Hydroxychloroquine sulfate (HCQS), an antimalarial drug, was potentially used for clinical trials with the hope of treating patients suffering from SARS-CoV-2 during the COVID-19 pandemic. Herein, we have extensively delineated the binding interactions of HCQS with RNA under physiological conditions using multi-spectroscopic and calorimetric approaches. Our results demonstrated that HCQS binds to RNA through the groove-binding mode in uridine- and cytidine-rich regions. The mode of binding was meticulously characterized by fluorescence quenching studies and circular dichroism spectroscopy, well complemented by other experiments. Our results obtained from isothermal titration calorimetry reveal the phenomenon of the release of bound water molecules when HCQS binds at the groove position of RNA, the process being entropically driven. Furthermore, we have employed the concept of host-guest chemistry for the sequestration of RNA-bound HCQS using a water-soluble, non-toxic, 4-sulfocalix[4]arene as a basket-type macrocyclic host. This investigation may be conducive to the development of safe RNA-based therapeutics like RNA-based vaccines that comprise small molecule-RNA interactions.
Collapse
Affiliation(s)
- Rahul Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India.
| | - Subhasis Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India.
| | - Madhumita Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India.
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India.
| |
Collapse
|
6
|
Zimmer KJL, Johnson RE, Little H, Duhamel J, Manderville RA. Harnessing a Fluorescent Nucleobase Surrogate for Supramolecular FRET-Aptamer Detection and Target-Site Mapping. ACS Sens 2025; 10:1822-1832. [PMID: 40008955 DOI: 10.1021/acssensors.4c02772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
DNA aptamers can bind small molecule ligands with high affinity and specificity to produce a unique supramolecular structure. Methods to obtain structural information about the binding interaction coupled with sensitive diagnostics is a gold standard for aptasensor design. However, most sensing strategies afford ligand detection without structural insight, while NMR- or crystallography-based structural methods lack sensitivity required for diagnostics. FRET-based strategies can afford both, especially with internal fluorescent nucleobase probes that are spatially fixed within the helix, but dual aptamer labeling can compromise aptamer affinity toward its target. Herein, we showcase a nucleobase surrogate-ligand FRET-based strategy that affords target-site mapping combined with sensitive target detection that addresses these challenges. A fluorescent molecular rotor (FMR) thiophene chalcone (Th6HI) nucleobase surrogate was incorporated into the tetracycline (TC) 42-mer DNA binding aptamer OTC2 to serve as an acceptor for the TC donor. Time-resolved fluorescence anisotropy experiments predict a compact prefolded OTC2 aptamer that is hardly impacted by TC binding. Consequently, direct excitation of the internal FMR Th6HI at 530 nm affords little response to TC binding, as probe rigidity is not strongly altered. In contrast, indirect excitation of the Th6HI probe through TC donor excitation at 378 nm affords site-dependent sensitized fluorescence (Fsen) of the Th6HI acceptor to afford enhanced sensitivity for TC detection compared to a native platform, which utilizes the intrinsic TC fluorescence. Furthermore, the FRET response provides target-site mapping to build a new binding model for the TC-OTC2 complex that is akin to the three-helical structure of the hammerhead ribozyme.
Collapse
Affiliation(s)
- Karley J L Zimmer
- Departments of Chemistry and Toxicology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Ryan E Johnson
- Departments of Chemistry and Toxicology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hunter Little
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
7
|
Šoltysová M, Güixens-Gallardo P, Sieglová I, Soldánová A, Krejčiříková V, Fábry M, Brynda J, Khoroshyy P, Hocek M, Řezáčová P. Using environment-sensitive tetramethylated thiophene-BODIPY fluorophores in DNA probes for studying effector-induced conformational changes of protein-DNA complexes. RSC Chem Biol 2025:d4cb00260a. [PMID: 39822774 PMCID: PMC11734750 DOI: 10.1039/d4cb00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
The LutR protein represses the transcription of genes encoding enzymes for the utilization of l-lactate in Bacillus subtilis through binding to a specific DNA region. In this study, we employed oligonucleotide probes modified by viscosity-sensitive tetramethylated thiophene-BODIPY fluorophores to investigate the impact of selected metabolites on the LutR-DNA complex. Our goal was to identify the effector molecule whose binding alters the protein-DNA affinity, thereby enabling gene transcription. The designed DNA probes exhibited distinctive responses to the binding and release of the protein, characterized by significant alterations in fluorescence lifetime. Through this method, we have identified l-lactate as the sole metabolite exerting a substantial modulating effect on the protein-DNA interaction and thus confirmed its role as an effector molecule. Moreover, we showed that our approach was able to follow conformation changes affecting affinity, which were not captured by other methods commonly used to study the protein-DNA interaction, such as electro-mobility shift assays and florescence anisotropy binding studies. This work underlines the potential of environment-sensitive fluorophore-linked nucleotide modifications, i.e. dCTBdp, for studying the dynamics and subtle changes of protein-DNA interactions.
Collapse
Affiliation(s)
- Markéta Šoltysová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Irena Sieglová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Anna Soldánová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Veronika Krejčiříková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Milan Fábry
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Petro Khoroshyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
- Department of Organic Chemistry, Faculty of Science, Charles University Hlavova 8 CZ-12843 Prague 2 Czechia
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| |
Collapse
|
8
|
Arora A, Kumar S, Maity J, Singh BK. Microwave-assisted synthesis of base-modified fluorescent 1,4-dihydropyridine nucleosides: photophysical characterization and insights. RSC Adv 2024; 14:39833-39843. [PMID: 39697248 PMCID: PMC11653174 DOI: 10.1039/d4ra07295b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
A synthesis of a small library of fluorescent 1,4-dihydropyridine nucleoside analogues has been successfully carried out under solvent-free conditions via a one-pot three-component Hantzsch condensation reaction. The process involved a Ba(NO3)2 catalyzed solvent-free reaction between 3',5'-di-O-acetyl-5-formyl-2'-deoxyuridine, differently substituted β-keto ester and ammonium acetate under microwave irradiation. This facile methodology yielded the desired products with very high yields (86-96%) under solvent-free reaction conditions in a short reaction time, which was followed by a simple workup. Yields obtained under microwave and conventional heating were compared, with the microwave irradiation condition displaying superior results. The synthesized compounds were characterized by IR, 1H-NMR, 13C-NMR, 1H-1H COSY, 1H-13C HETCOR, 2D NOESY NMR and HRMS analysis. These nucleoside analogues exhibited significant fluorescence, with a prominent emission band around 460 nm (excitation at 235 nm). Photophysical studies revealed strong fluorescence intensity, excellent Stokes shifts (70-162 nm), and high quantum yields (0.022-0.579), outperforming other pyrimidine-based fluorescent nucleosides. Notably, 5-(diethyl 2'',6''-propyl-1'',4''-dihydropyridine-3'',5''-dicarboxylate)-4''-yl-2'-deoxyuridine demonstrated a quantum yield as high as 0.579 in DMSO during solvatochromic studies, highlighting their potential for probing local nucleic acid structure and dynamics. Additionally, we demonstrated the scalability of the synthesis protocol by producing one of the compounds on a gram scale, confirming its practical viability for large-scale production. This study underscores the potential of these fluorescent nucleoside analogues for various biochemical applications.
Collapse
Affiliation(s)
- Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Jyotirmoy Maity
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
- Department of Chemistry, St. Stephen's College, University of Delhi Delhi-110 007 India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
9
|
Qin Y, Chen X, Xu F, Zhu K, Wang P, Zhang Y, Zhang Y. Pectin enhances the inhibition of α-amylase via the mixture of rutin and quercetin. Int J Biol Macromol 2024; 285:138251. [PMID: 39626819 DOI: 10.1016/j.ijbiomac.2024.138251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/08/2024]
Abstract
The human dietary system, which contains a variety of compounds such as polyphenols and polysaccharides, is very complex. Whether polysaccharides affect the inhibitory of polyphenol mixtures on α-amylase needs to be further investigated. The aim of this study was to analyze the effect and mechanism of pectin on the inhibition of α-amylase by a mixture of rutin and quercetin (R-Q). Results revealed that the inhibition and quenching affinity of R-Q for α-amylase was enhanced by pectin. The Stern-Volmer quenching constant of R-Q-α-amylase was increased by pectin from (6.08 ± 0.453) × 103 mL/mg to (9.80 ± 0.285) × 103 mL/mg. Pectin enhanced the ability of R-Q to inhibit α-amylase for two main reasons. On the one hand, it was owing to the binding of pectin to rutin, which increased the opportunity for quercetin to bind to the active center of α-amylase, thus enhancing the inhibitory effect of R-Q on α-amylase. On the other hand, pectin and quercetin simultaneously bound to different sites of α-amylase by noncovalent interactions to form the ternary complex of pectin-α-amylase-quercetin. The conformation of α-amylase and the hydrophobicity of amino acid residues were altered by the ternary complex, thereby enhancing the hydrogen bonding in the reaction system.
Collapse
Affiliation(s)
- Yajuan Qin
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; School of Forest, Northeast Forestry University, Harbin 150040, Heilongjiang, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Ping Wang
- School of Forest, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Yutong Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China; Sanya Research Institute, Chinese Academy of Tropical Agriculture Science, Sanya 572025, China.
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China.
| |
Collapse
|
10
|
Chowdhury M, John A, Hudson RHE. Breaking the blue barrier of nucleobase fluorescence emission with dicyanovinyl-based uracil molecular rotor probes. RSC Adv 2024; 14:37605-37609. [PMID: 39588240 PMCID: PMC11586925 DOI: 10.1039/d4ra07000c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Dicyanovinyl-modified uracil produces fluorescent molecular rotors (FMR) that display massively red-shifted emission and huge Stokes shifts. They are exemplified by DCVSU - an intrinsically fluorescent nucleobase analog (IFNA) with the longest emission wavelength of 592 nm (DMSO) reported thus far which also shows strong polarity sensitivity and large Stokes shift (λ = 181 nm). The IFNAs exhibited typical molecular rotor response to solvent viscosity with brightnesses (ε × φ) of up to 8700 cm-1 M-1. 1H NMR titration confirmed the expected association of the IFNA with the complementary nucleobase adenine-9-ethyl acetate.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| | - Akym John
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| | - Robert H E Hudson
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| |
Collapse
|
11
|
Hasturk B, Eren F. A therapeutic approach for the hepatitis C virus: in silico design of an antisense oligonucleotide-based candidate capsid inhibitor. Virus Genes 2024; 60:446-454. [PMID: 39083128 DOI: 10.1007/s11262-024-02088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/30/2024] [Indexed: 09/10/2024]
Abstract
Direct-acting antiviral (DAA) drugs have been shown to effectively reduce viral load and cure a high proportion of hepatitis C virus (HCV) infections. However, costs associated with the course of therapy and any possible adverse effects should also be considered. It is important to acknowledge, moreover, that certain groups may not be eligible for treatment. Given that there is currently no approved vaccine for HCV infection, the need for an effective, safe, and accessible treatment remains a crucial priority. The aim of this study is to develop an antisense oligonucleotide (ASO)-based therapeutic drug that can inhibit HCV capsid. After analyzing 817 HCV capsid protein mRNA sequences using the NCBI Virus Data Portal, a conserved region of 7 nucleotides (nt) was identified in all genotypes (1-7). However, because of its high GC% content, this region is not a suitable target for ASO. Conversely, the other highly conserved region, which is only 8 nt long, was preserved in 801 datasets after removing missing and differing sequence data. The candidate ASO was then investigated using computer simulations to assess its potential. Thus, it is possible that the ASO sequence consisting of 8 nt could be a viable therapeutic target for the inhibition of HCV capsid. Furthermore, the 7 nt sequence, which is conserved in all datasets, may be targeted using alternative strategies in lieu of ASO-based targeting.
Collapse
Affiliation(s)
- Burcu Hasturk
- Department of Medical Biology and Genetics, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Fatih Eren
- Faculty of Medicine, Department of Medical Biology, Marmara University, Istanbul, Turkey.
- Institute of Gastroenterology, Liver Research Unit, Marmara University, Istanbul, Turkey.
| |
Collapse
|
12
|
Stachelska-Wierzchowska A, Narczyk M, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B. Interaction of Tri-Cyclic Nucleobase Analogs with Enzymes of Purine Metabolism: Xanthine Oxidase and Purine Nucleoside Phosphorylase. Int J Mol Sci 2024; 25:10426. [PMID: 39408755 PMCID: PMC11477426 DOI: 10.3390/ijms251910426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Fluorescent markers play important roles in spectroscopic and microscopic research techniques and are broadly used in basic and applied sciences. We have obtained markers with fluorescent properties, two etheno derivatives of 2-aminopurine, as follows: 1,N2-etheno-2-aminopurine (1,N2-ε2APu, I) and N2,3-etheno-2-aminopurine (N2,3-ε2APu, II). In the present paper, we investigate their interaction with two key enzymes of purine metabolism, purine nucleoside phosphorylase (PNP), and xanthine oxidase (XO), using diffraction of X-rays on protein crystals, isothermal titration calorimetry, and fluorescence spectroscopy. Crystals were obtained and structures were solved for WT PNP and D204N-PNP mutant in a complex with N2,3-ε2APu (II). In the case of WT PNP-1,N2-ε2APu (I) complex, the electron density corresponding to the ligand could not be identified in the active site. Small electron density bobbles may indicate that the ligand binds to the active site of a small number of molecules. On the basis of spectroscopic studies in solution, we found that, in contrast to PNP, 1,N2-ε2APu (I) is the ligand with better affinity to XO. Enzymatic oxidation of (I) leads to a marked increase in fluorescence near 400 nm. Hence, we have developed a new method to determine XO activity in biological material, particularly suitable for milk analysis.
Collapse
Affiliation(s)
- Alicja Stachelska-Wierzchowska
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Marta Narczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| |
Collapse
|
13
|
Dutta S, Srivatsan SG. Enzymatic Functionalization of RNA Oligonucleotides by Terminal Uridylyl Transferase Using Fluorescent and Clickable Nucleotide Analogs. Chem Asian J 2024; 19:e202400475. [PMID: 38949615 DOI: 10.1002/asia.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
We report a systematic study on controlling the enzyme activity of a terminal uridylyl transferase (TUTase) called SpCID1, which provides methods to effect site-specific incorporation of a single modified nucleotide analog at the 3'-end of an RNA oligonucleotide (ON). Responsive heterocycle-modified fluorescent UTP probes that are useful in analyzing non-canonical nucleic acid structures and azide- and alkyne-modified UTP analogs that are compatible for chemoenzymatic functionalization were used as study systems. In the first strategy, we balanced the concentration of essential metal ion cofactors (Mg2+ and Mn2+ ions) to restrict the processivity of the enzyme, which gave a very good control on the incorporation of clickable nucleotide analogs. In the second approach, borate that complexes with 2' and 3' oxygen atoms of a ribose sugar was used as a reversibly binding chelator to block repeated addition of nucleotide analogs. Notably, in the presence of heterocycle-modified fluorescent UTPs, we obtained single-nucleotide incorporated RNA products in reasonable yields, while with clickable nucleotides yields were very good. Further, 3'-end azide- and alkyne-labeled RNA ONs were post-enzymatically functionalized by CuAAC and SPAAC reactions with fluorescent probes. These strategies broaden the scope of TUTase in site-specifically installing modifications of different types onto RNA for various applications.
Collapse
Affiliation(s)
- Swagata Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
14
|
Stachelska-Wierzchowska A, Wierzchowski J. Chemo-Enzymatic Generation of Highly Fluorescent Nucleoside Analogs Using Purine-Nucleoside Phosphorylase. Biomolecules 2024; 14:701. [PMID: 38927104 PMCID: PMC11201700 DOI: 10.3390/biom14060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
15
|
Matić J, Piotrowski P, Vrban L, Kobetić R, Vianello R, Jurić I, Fabijanić I, Pernar Kovač M, Brozovic A, Piantanida I, Schmuck C, Radić Stojković M. Distinctive Nucleic Acid Recognition by Lysine-Embedded Phenanthridine Peptides. Int J Mol Sci 2024; 25:4866. [PMID: 38732083 PMCID: PMC11084427 DOI: 10.3390/ijms25094866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Three new phenanthridine peptide derivatives (19, 22, and 23) were synthesized to explore their potential as spectrophotometric probes for DNA and RNA. UV/Vis and circular dichroism (CD) spectra, mass spectroscopy, and computational analysis confirmed the presence of intramolecular interactions in all three compounds. Computational analysis revealed that compounds alternate between bent and open conformations, highlighting the latter's crucial influence on successful polynucleotide recognition. Substituting one glycine with lysine in two regioisomers (22, 23) resulted in stronger binding interactions with DNA and RNA than for a compound containing two glycines (19), thus emphasizing the importance of lysine. The regioisomer with lysine closer to the phenanthridine ring (23) exhibited a dual and selective fluorimetric response with non-alternating AT and ATT polynucleotides and induction of triplex formation from the AT duplex. The best binding constant (K) with a value of 2.5 × 107 M-1 was obtained for the interaction with AT and ATT polynucleotides. Furthermore, apart from distinguishing between different types of ds-DNA and ds-RNA, the same compound could recognize GC-rich DNA through distinct induced CD signals.
Collapse
Affiliation(s)
- Josipa Matić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Patryciusz Piotrowski
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany; (P.P.)
| | - Lucija Vrban
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.V.); (R.V.)
| | - Renata Kobetić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.V.); (R.V.)
| | - Ivona Jurić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Ivana Fabijanić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Margareta Pernar Kovač
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.P.K.); (A.B.)
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.P.K.); (A.B.)
| | - Ivo Piantanida
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany; (P.P.)
| | - Marijana Radić Stojković
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| |
Collapse
|
16
|
Navarrete-Miguel M, Giussani A, Rubio M, Boggio-Pasqua M, Borin AC, Roca-Sanjuán D. Quantum-Chemistry Study of the Photophysical Properties of 4-Thiouracil and Comparisons with 2-Thiouracil. J Phys Chem A 2024; 128:2273-2285. [PMID: 38504122 PMCID: PMC10982997 DOI: 10.1021/acs.jpca.3c06310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
DNA in living beings is constantly damaged by exogenous and endogenous agents. However, in some cases, DNA photodamage can have interesting applications, as it happens in photodynamic therapy. In this work, the current knowledge on the photophysics of 4-thiouracil has been extended by further quantum-chemistry studies to improve the agreement between theory and experiments, to better understand the differences with 2-thiouracil, and, last but not least, to verify its usefulness as a photosensitizer for photodynamic therapy. This study has been carried out by determining the most favorable deactivation paths of UV-vis photoexcited 4-thiouracil by means of the photochemical reaction path approach and an efficient combination of the complete-active-space second-order perturbation theory//complete-active-space self-consistent field (CASPT2//CASSCF), (CASPT2//CASPT2), time-dependent density functional theory (TDDFT), and spin-flip TDDFT (SF-TDDFT) methodologies. By comparing the data computed herein for both 4-thiouracil and 2-thiouracil, a rationale is provided on the relatively higher yields of intersystem crossing, triplet lifetime and singlet oxygen production of 4-thiouracil, and the relatively higher yield of phosphorescence of 2-thiouracil.
Collapse
Affiliation(s)
- Miriam Navarrete-Miguel
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Angelo Giussani
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Mercedes Rubio
- Departament
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| | - Martial Boggio-Pasqua
- Laboratoire
de Chimie et Physique Quantiques, IRSAMC,
CNRS et Université Toulouse 3, 118 route de Narbonne, 31062 Toulouse, France
| | - Antonio Carlos Borin
- Department
of Fundamental Chemistry, Institute of Chemistry,
University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo CEP 05508-000, Brazil
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 Valencia, Spain
| |
Collapse
|
17
|
Gonçalves JM, Gonçalves JND, Sousa LF, Rodrigues LR, Correia-de-Sá P, Coutinho PJG, Castanheira EMS, Oliveira R, Dias AM. 2,4,5-Triaminopyrimidines as blue fluorescent probes for cell viability monitoring: synthesis, photophysical properties, and microscopy applications. Org Biomol Chem 2024; 22:2252-2263. [PMID: 38390694 DOI: 10.1039/d4ob00092g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Monitoring cell viability is critical in cell biology, pathology, and drug discovery. Most cell viability assays are cell-destructive, time-consuming, expensive, and/or hazardous. Herein, we present a series of newly synthesized 2,4,5-triaminopyrimidine derivatives able to discriminate between live and dead cells. To our knowledge, these compounds are the first fluorescent nucleobase analogues (FNAs) with cell viability monitoring potential. These new fluorescent molecules are synthesized using highly efficient and cost-effective methods and feature unprecedented photophysical properties (longer absorption and emission wavelengths, environment-sensitive emission, and unprecedented brightness within FNAs). Using a live-dead Saccharomyces cerevisiae cell and theoretical assays, the fluorescent 2,4,5-triaminopyrimidine derivatives were found to specifically accumulate inside dead cells by interacting with dsDNA grooves, thus paving the way for the emergence of novel and safe fluorescent cell viability markers emitting in the blue region. As the majority of commercially available viability dyes emit in the green to red region of the visible spectrum, these novel markers might be useful to meet the needs of blue markers for co-staining combinations.
Collapse
Affiliation(s)
- Jorge M Gonçalves
- CQ-UM - Centre of Chemistry of University of Minho, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- CF-UM-UP - Physics Centre of Minho and Porto Universities and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Campus de Gualtar, 4710-057, Braga, Portugal
| | - João N D Gonçalves
- CQ-UM - Centre of Chemistry of University of Minho, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luís F Sousa
- CQ-UM - Centre of Chemistry of University of Minho, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- CF-UM-UP - Physics Centre of Minho and Porto Universities and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Campus de Gualtar, 4710-057, Braga, Portugal
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- CF-UM-UP - Physics Centre of Minho and Porto Universities and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Campus de Gualtar, 4710-057, Braga, Portugal
| | - Elisabete M S Castanheira
- CF-UM-UP - Physics Centre of Minho and Porto Universities and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Campus de Gualtar, 4710-057, Braga, Portugal
| | - Rui Oliveira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alice M Dias
- CQ-UM - Centre of Chemistry of University of Minho, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
18
|
Veríssimo NVP, Mussagy CU, Bento HBS, Pereira JFB, Santos-Ebinuma VDC. Ionic liquids and deep eutectic solvents for the stabilization of biopharmaceuticals: A review. Biotechnol Adv 2024; 71:108316. [PMID: 38199490 DOI: 10.1016/j.biotechadv.2024.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Biopharmaceuticals have allowed the control of previously untreatable diseases. However, their low solubility and stability still hinder their application, transport, and storage. Hence, researchers have applied different compounds to preserve and enhance the delivery of biopharmaceuticals, such as ionic liquids (ILs) and deep eutectic solvents (DESs). Although the biopharmaceutical industry can employ various substances for enhancing formulations, their effect will change depending on the properties of the target biomolecule and environmental conditions. Hence, this review organized the current state-of-the-art on the application of ILs and DESs to stabilize biopharmaceuticals, considering the properties of the biomolecules, ILs, and DESs classes, concentration range, types of stability, and effect. We also provided a critical discussion regarding the potential utilization of ILs and DESs in pharmaceutical formulations, considering the restrictions in this field, as well as the advantages and drawbacks of these substances for medical applications. Overall, the most applied IL and DES classes for stabilizing biopharmaceuticals were cholinium-, imidazolium-, and ammonium-based, with cholinium ILs also employed to improve their delivery. Interestingly, dilute and concentrated ILs and DESs solutions presented similar results regarding the stabilization of biopharmaceuticals. With additional investigation, ILs and DESs have the potential to overcome current challenges in biopharmaceutical formulation.
Collapse
Affiliation(s)
- Nathalia Vieira Porphirio Veríssimo
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, São Paulo University, CEP: 14040-020 Ribeirão Preto, SP, Brazil.
| | - Cassamo Usemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Heitor Buzetti Simões Bento
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| | | | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| |
Collapse
|
19
|
Paez‐Perez M, Kuimova MK. Molecular Rotors: Fluorescent Sensors for Microviscosity and Conformation of Biomolecules. Angew Chem Int Ed Engl 2024; 63:e202311233. [PMID: 37856157 PMCID: PMC10952837 DOI: 10.1002/anie.202311233] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
The viscosity and crowding of biological environment are considered vital for the correct cellular function, and alterations in these parameters are known to underly a number of pathologies including diabetes, malaria, cancer and neurodegenerative diseases, to name a few. Over the last decades, fluorescent molecular probes termed molecular rotors proved extremely useful for exploring viscosity, crowding, and underlying molecular interactions in biologically relevant settings. In this review, we will discuss the basic principles underpinning the functionality of these probes and will review advances in their use as sensors for lipid order, protein crowding and conformation, temperature and non-canonical nucleic acid structures in live cells and other relevant biological settings.
Collapse
Affiliation(s)
- Miguel Paez‐Perez
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| |
Collapse
|
20
|
Beghennou A, Rondot O, Corcé V, Botuha C. 1 H-1,2,3-triazolyl-1,6-naphthyridin-7(6 H)-ones as Potential Fluorescent Nucleoside Analogues: Synthesis and Optical Properties. Molecules 2024; 29:687. [PMID: 38338431 PMCID: PMC10856630 DOI: 10.3390/molecules29030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this article, we present the synthesis and the optical properties of three original molecules as potential fluorescent ribonucleoside analogues incorporating a 1,6-naphthyridin-7(6H)-one scaffold as a fluorescent nucleobase and a 1,2,3-triazole as a linkage. The nucleosides were prepared via a Cu alkyne-azide cycloaddition (CuAAC) reaction between a ribofuranosyl azide and a 4-ethynylpyridine partner. Construction of substituted 1,6-naphthyridin-7(6H)-ones was achieved through two additional steps. Optical property studies were investigated on nucleoside analogues. Powerful fluorescence properties have been evidenced with a remarkable change of emissivity depending on the polarity of the solvent, making these molecules suitable as a new class of artificial fluorescent nucleosides for investigating enzyme binding sites as well as probing nucleic acids. In addition, we are convinced that such analogues could be of great interest in the search for new antiviral or antitumoral drugs based on nucleosides.
Collapse
Affiliation(s)
| | | | - Vincent Corcé
- Institut Parisien de Chimie Moléculaire, CNRS UMR 9232, Sorbonne Université, F-75252 Paris, France; (A.B.); (O.R.)
| | - Candice Botuha
- Institut Parisien de Chimie Moléculaire, CNRS UMR 9232, Sorbonne Université, F-75252 Paris, France; (A.B.); (O.R.)
| |
Collapse
|
21
|
Copp W, Karimi A, Yang T, Guarné A, Luedtke NW. Fluorescent molecular rotors detect O6-methylguanine dynamics and repair in duplex DNA. Chem Commun (Camb) 2024; 60:1156-1159. [PMID: 38190113 DOI: 10.1039/d3cc04782b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alkylation at the O6 position of guanine is a common and highly mutagenic form of DNA damage. Direct repair of O6-alkylguanines by the "suicide" enzyme O6-methylguanine DNA methyltransferase (MGMT, AGT, AGAT) maintains genome stability and inhibits carcinogenesis. In this study, a fluorescent analogue of thymidine containing trans-stilbene (tsT) is quenched by O6-methylguanine residues in the opposite strand of DNA by molecular dynamics that propagate through the duplex with as much as ∼9 Å of separation. Increased fluorescence of tsT or the cytosine analogue tsC resulting from MGMT-mediated DNA repair were distinguishable from non-covalent DNA-protein binding following protease digest. To our knowledge, this is the first study utilizing molecular rotor base analogues to detect DNA damage and repair activities in duplex DNA.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
| | - Ashkan Karimi
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
| | - Tianxiao Yang
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Biochemistry, McGill University, H3G 1Y6 Montreal, Canada
| | - Alba Guarné
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Biochemistry, McGill University, H3G 1Y6 Montreal, Canada
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, H3A-0B8 Montreal, Canada
- Centre de Recherche en Biologie Structural, McGill University, H3G 0B1 Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, H3A-1A3 Montreal, Canada
| |
Collapse
|
22
|
Le HN, Kuchlyan J, Baladi T, Albinsson B, Dahlén A, Wilhelmsson LM. Synthesis and photophysical characterization of a pH-sensitive quadracyclic uridine (qU) analogue. Chemistry 2024:e202303539. [PMID: 38230625 DOI: 10.1002/chem.202303539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Fluorescent base analogues (FBAs) have become useful tools for applications in biophysical chemistry, chemical biology, live-cell imaging, and RNA therapeutics. Herein, two synthetic routes towards a novel FBA of uracil named qU (quadracyclic uracil/uridine) are described. The qU nucleobase bears a tetracyclic fused ring system and is designed to allow for specific Watson-Crick base pairing with adenine. We find that qU absorbs light in the visible region of the spectrum and emits brightly with a quantum yield of 27 % and a dual-band character in a wide pH range. With evidence, among other things, from fluorescence lifetime measurements we suggest that this dual emission feature results from an excited-state proton transfer (ESPT) process. Furthermore, we find that both absorption and emission of qU are highly sensitive to pH. The high brightness in combination with excitation in the visible and pH responsiveness makes qU an interesting native-like nucleic acid label in spectroscopy and microscopy applications in, for example, the field of mRNA and antisense oligonucleotide (ASO) therapeutics.
Collapse
Affiliation(s)
- Hoang-Ngoan Le
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - Jagannath Kuchlyan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Tom Baladi
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anders Dahlén
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| |
Collapse
|
23
|
Johnson RE, Murray MT, Bycraft LJ, Myler P, Wetmore SD, Manderville RA. Harnessing a 4-Formyl-Aniline Handle to Tune the Stability of a DNA Aptamer-Protein Complex via Fluorescent Surrogates. Bioconjug Chem 2023; 34:2066-2076. [PMID: 37857354 DOI: 10.1021/acs.bioconjchem.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Interactions between DNA aptamers and protein targets hold promise for the development of pharmaceuticals and diagnostics. As such, the utilization of fluorescent nucleobase surrogates in studying aptamer-protein interactions is a powerful tool due to their ability to provide site-specific information through turn-on fluorescence. Unfortunately, previously described turn-on probes serving as nucleobase replacements have only been strongly disruptive to the affinity of aptamer-protein interactions. Herein, we present a modified TBA15 aptamer for thrombin containing a fluorescent surrogate that provides site-specific turn-on emission with low nanomolar affinity. The modification, referred to as AnBtz, was substituted at position T3 and provided strong turn-on emission (Irel ≈ 4) and brightness (ε·Φ > 20 000 cm-1 M-1) with an apparent dissociation constant (Kd) of 15 nM to afford a limit of detection (LOD) of 10 nM for thrombin in 20% human serum. The probe was selected through a modular "on-strand" synthesis process that utilized a 4-formyl-aniline (4FA) handle. Using this platform, we were able to enhance the affinity of the final aptamer conjugate by ∼30-fold in comparison with the initial conjugate design. Molecular dynamics simulations provide insight into the structural basis for this phenomenon and highlight the importance of targeting hydrophobic protein binding sites with fluorescent nucleobase surrogates to create new contacts with protein targets.
Collapse
Affiliation(s)
- Ryan E Johnson
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Makay T Murray
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Lucas J Bycraft
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Peter Myler
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Richard A Manderville
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
24
|
Kekić T, Lietard J. A Canvas of Spatially Arranged DNA Strands that Can Produce 24-bit Color Depth. J Am Chem Soc 2023; 145:22293-22297. [PMID: 37787949 PMCID: PMC10591465 DOI: 10.1021/jacs.3c06500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 10/04/2023]
Abstract
Nucleic acid microarray photolithography combines density, throughput, and positional control in DNA synthesis. These surface-bound sequence libraries are conventionally used in large-scale hybridization assays against fluorescently labeled, perfect-match DNA strands. Here, we introduce another layer of control for in situ microarray synthesis─hybridization affinity─to precisely modulate fluorescence intensity upon duplex formation. Using a combination of Cy3-, Cy5-, and fluorescein-labeled targets and an ensemble of truncated DNA probes, we organize 256 shades of red, green, and blue intensities that can be superimposed and merged. In so doing, hybridization alone is able to produce a large palette of 16 million colors or 24-bit color depth. Digital images can be reproduced with high fidelity at the micrometer scale by using a simple process that assigns sequence to any RGB value. Largely automated, this approach can be seen as miniaturized DNA-based painting.
Collapse
Affiliation(s)
- Tadija Kekić
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
25
|
Regan KT, Pounder A, Lin C, Chen LD, Manderville RA. Isomer-Specific Solvatochromic and Molecular Rotor Properties of ESIPT-Active Push-Pull Fluorescent Chalcone Dyes. J Phys Chem A 2023; 127:8365-8373. [PMID: 37773491 DOI: 10.1021/acs.jpca.3c04903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Aromatic chromophores possessing intramolecular hydrogen-bonds that can undergo excited-state intramolecular proton transfer (ESIPT) are critical tools for chemosensing/biosensing applications because they create large Stokes-shifted fluorescence with no overlap with the absorption spectrum to limit back-ground interferences. Classic ESIPT-active fluorophores, such as the 2-(2'-hydroxyphenyl) benzazole (HBX) series (X = NH, O, S), favor a ground-state (GS) enol (E) form that undergoes ESIPT to afford an excited-state (ES) keto (K) tautomer that generates red-shifted fluorescence. Herein, we have attached the HBX moiety to 6-methoxy-indanone (6MI) to create isomeric (ortho and para) ESIPT-active chalcone dyes and have characterized their photophysical properties in polar protic solvents (MeOH and glycerol (Gly)/MeOH mixtures) and a nonpolar aprotic (1,4-dioxane) solvent for comparison. The chalcones favor a GS E structure, which undergoes ESIPT in MeOH, Gly/MeOH mixtures, and dioxane to exclusively afford K emission with large Stokes shifts. The o-isomers possess expanded π-conjugation compared to their p-isomer counterparts, which diminishes their tendency to generate twisted intramolecular charge transfer (TICT) states. Consequently, the o-isomers have greater quantum yields and lack molecular rotor (MR) character with little K emission response to increased solvent viscosity. However, they possess strong positive solvatochromism, displaying significant blue wavelength shifts coupled with turn-on K emission in moving from polar protic MeOH to nonpolar dioxane. In contrast, the p-isomers display MR character with turn-on K emission in 75:25 Gly/MeOH compared to their emission in MeOH (up to 14-fold) due to a strong tendency for TICT. Mechanistic insight into the observed isomer-specific photophysical properties of the ESIPT-active chalcones was obtained through density functional theory (DFT) calculations. Implications for DNA biosensing applications are discussed.
Collapse
Affiliation(s)
- Keenan T Regan
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Austin Pounder
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Camille Lin
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Leanne D Chen
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
26
|
Neitz H, Höbartner C. A tolane-modified 5-ethynyluridine as a universal and fluorogenic photochemical DNA crosslinker. Chem Commun (Camb) 2023; 59:12003-12006. [PMID: 37727895 DOI: 10.1039/d3cc03796g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
We report the fluorescent nucleoside ToldU and its application as a photoresponsive crosslinker in three different DNA architectures with enhanced fluorescence emission of the crosslinked products. The fluorogenic ToldU crosslinking reaction enables the assembly of DNA polymers in a hybridization chain reaction for the concentration-dependent detection of a specific DNA sequence.
Collapse
Affiliation(s)
- Hermann Neitz
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), University of Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
27
|
Monari A, Burger A, Dumont E. Rationalizing the environment-dependent photophysical behavior of a DNA luminescent probe by classical and non-adiabatic molecular dynamics simulations. Photochem Photobiol Sci 2023; 22:2081-2092. [PMID: 37166569 DOI: 10.1007/s43630-023-00431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Environment-sensitive fluorescent nucleoside analogs are of utmost importance to investigate the structure of nucleic acids, their intrinsic flexibility, and sequence-specific DNA- and RNA-binding proteins. The latter play indeed a key role in transcription, translation as well as in the regulation of RNA stability, localization and turnover, and many other cellular processes. The sensitivity of the embedded fluorophore to polarity, hydration, and base stacking is clearly dependent on the specific excited-state relaxation mechanism and can be rationalized combining experimental and computational techniques. In this work, we elucidate the mechanisms leading to the population of the triplet state manifold for a versatile nucleobase surrogate, namely the 2-thienyl-3-hydroxychromone in gas phase, owing to non-adiabatic molecular dynamics simulations. Furthermore, we analyze its behavior in the B-DNA environment via classical molecular dynamics simulations, which evidence a rapid extrusion of the adenine facing the 2-thienyl-3-hydroxychromone nucleobase surrogate. Our simulations provide new insights into the dynamics of this family of chromophores, which could give rise to an integrated view and a fine tuning of their photochemistry, and namely the role of excited-state intramolecular proton transfer for the rational design of the next generation of fluorescent nucleoside analogs.
Collapse
Affiliation(s)
- Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006, Paris, France.
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Elise Dumont
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France.
- Institut Universitaire de France, 5 Rue Descartes, 75005, Paris, France.
| |
Collapse
|
28
|
Pivovarenko VG. Multi-parametric sensing by multi-channel molecular fluorescent probes based on excited state intramolecular proton transfer and charge transfer processes. BBA ADVANCES 2023; 3:100094. [PMID: 37347000 PMCID: PMC10279795 DOI: 10.1016/j.bbadva.2023.100094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Considering the applications of fluorescent probes and the information they provide, their brightness of fluorescence and photostability are of paramount importance. However, in the case of steady-state fluorescence spectroscopy and fluorescence microscopy, the amount of information can be increased by the application of multi-channel probes, via a multi-band fluorophore introduced in the probe molecule. In most cases, the use of such a multi-band (or multi-channel) fluorophore can also be combined with the concomitant introduction of one or several analyte receptors. Most often, the design of ratiometric probes with multi-band fluorescence emission are based on phenomena such as photoinduced intramolecular charge transfer (ICT) or excited state intramolecular proton transfer (ESIPT). Although ICT probes were up to recently the most popular, ESIPT probes and among them 3-hydroxyflavone derivatives, were shown to be the most productive. Several general problems were resolved by this family of probes, as for example the measurement of local dielectric constant, local H-bond accepting ability, water local concentration and ATP concentration in small volumes. Incorporation of such multi-channel probes into lipid membranes allowed to measure the different membrane potentials and to detect cell apoptosis. Also, it enabled to recognize and characterize the rafts formation in different lipid bilayers and peculiar features of the charged membrane interface. Such probes are also able to provide a concentration-dependent fluorescence signals upon binding of H+, Mg2+and Ba2+ions, and thus to recognize these different cations. The multi-channel probes are effective tools in the study of interactions of macromolecules such as peptides, proteins and nucleic acids. The most useful feature is that they inform simultaneously about several physical parameters, in this way giving a better insight in the investigated system. Thus, by comparing the reviewed probes with other modern fluorescent approaches, it can be concluded they are more informative and accurate tools.
Collapse
Affiliation(s)
- Vasyl G. Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| |
Collapse
|
29
|
Johnson RE, Murray MT, Bycraft LJ, Wetmore SD, Manderville RA. A modular aldol approach for internal fluorescent molecular rotor chalcone surrogates for DNA biosensing applications. Chem Sci 2023; 14:4832-4844. [PMID: 37181758 PMCID: PMC10171068 DOI: 10.1039/d3sc00772c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Fluorescent molecular rotors (FMRs) are critical tools for probing nucleic acid structure and function. Many valuable FMRs have been incorporated into oligonucleotides, although the methods of doing so can be cumbersome. Development of synthetically simple, high yielding modular methods to fine-tune dye performance is crucial to expand the biotechnological applications of oligonucleotides. Herein, we report the utility of 6-hydroxy-indanone (6HI) with a glycol backbone to serve as a handle for on-strand aldehyde capture as a modular aldol approach for site-specific insertion of internal FMR chalcones. Aldol reactions with aromatic aldehydes containing N-donors proceed in high yield to create modified DNA oligonucleotides, which in the duplex match the stability of the fully paired canonical B-form with strong stacking interactions between the planar probe and the flanking base pairs, as evidenced by molecular dynamics (MD) simulations. The FMR chalcones possess remarkable quantum yields (Φfl up to 76%) in duplex DNA, coupled with large Stokes shifts (Δν up to 155 nm), light-up emissions (Irel up to 60-fold) that span the visible region (λem 518-680 nm) with brightness up to 17 480 cm-1 M-1. The library also contains a FRET pair and dual emission probes, suitable for ratiometric sensing. The ease of aldol insertion coupled with the excellent performance of the FMR chalcones permits their future wide-spread use.
Collapse
Affiliation(s)
- Ryan E Johnson
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Makay T Murray
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Lucas J Bycraft
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Richard A Manderville
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
30
|
Little HA, Ali A, Carter JG, Hicks MR, Dafforn TR, Tucker JHR. A plug-and-play aptamer diagnostic platform based on linear dichroism spectroscopy. Front Chem 2023; 11:1040873. [PMID: 37228864 PMCID: PMC10203435 DOI: 10.3389/fchem.2023.1040873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
A plug-and-play sandwich assay platform for the aptamer-based detection of molecular targets using linear dichroism (LD) spectroscopy as a read-out method has been demonstrated. A 21-mer DNA strand comprising the plug-and-play linker was bioconjugated onto the backbone of the filamentous bacteriophage M13, which gives a strong LD signal due to its ready alignment in linear flow. Extended DNA strands containing aptamer sequences that bind the protein thrombin, TBA and HD22, were then bound to the plug-and-play linker strand via complementary base pairing to generate aptamer-functionalised M13 bacteriophages. The secondary structure of the extended aptameric sequences required to bind to thrombin was checked using circular dichroism spectroscopy, with the binding confirmed using fluorescence anisotropy measurements. LD studies revealed that this sandwich sensor design is very effective at detecting thrombin down to pM levels, indicating the potential of this plug-and-play assay system as a new label-free homogenous detection system based on aptamer recognition.
Collapse
Affiliation(s)
- Haydn A. Little
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Aysha Ali
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jake G. Carter
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Timothy R. Dafforn
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James H. R. Tucker
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
31
|
Ma X, Shi L, Zhang B, Zhao S, Yuan X, Zhang X. Cy3 Cyanine Dye with Strong Fluorescence Enhancement for AGRO100 and Its Derivative. J Phys Chem B 2023; 127:1811-1818. [PMID: 36802619 DOI: 10.1021/acs.jpcb.2c08784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Nucleic acids, as important substances for biological inheritance, have attracted extensive attention in the biomedical field. More and more cyanine dyes are emerging as one of the probe tools for nucleic acid detection due to their excellent photophysical properties. Here, we discovered that the insertion of the AGRO100 sequence can specifically disrupt the twisted intramolecular charge transfer (TICT) mechanism of the trimethine cyanine dye (TCy3), resulting in a clear "turn-on" response. Moreover, the fluorescence enhancement of TCy3 combined with the T-rich AGRO100 derivative is more obvious. One explanation for the interaction between dT (deoxythymidine) and positively charged TCy3 may be that its outer layer carries the most negative charge. This study provides a theoretical basis for the use of TCy3 as a DNA probe, which has promising applications in the DNA detection of biological samples. It also provides the basis for the following construction of probes with specific ability for recognition.
Collapse
Affiliation(s)
- Xiaoying Ma
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Lei Shi
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Buyue Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Shuhua Zhao
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Xinyu Yuan
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Xiufeng Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
32
|
Demchenko AP. Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
33
|
Nimal R, Nur Unal D, Erkmen C, Kurbanoglu S, Siddiq M, Eren G, Shah A, Uslu B. Elucidating the interaction of antidepressant drug paroxetine with ct-dsDNA: A comparative study by electrochemical, spectroscopic, and molecular docking approaches. Bioelectrochemistry 2023; 149:108285. [PMID: 36240548 DOI: 10.1016/j.bioelechem.2022.108285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
Abstract
This study is designed to investigate the interaction of phenylpiperidine derivative drug paroxetine, which is an effective serotonin reuptake inhibitor and biomolecules through electrochemical, fluorescence spectroscopy, and molecular docking methods. The interaction between paroxetine and biomolecules was investigated by differential pulse voltammetry according to the decrease in deoxyguanosine anodic oxidation signal of double-stranded calf thymus DNA. Fluorescence spectroscopy studies were performed by titrating paroxetine against double-stranded calf thymus DNA solution at four different temperatures. The fluorescent results showed that paroxetine had a great affinity to bind with double-stranded calf thymus DNA. Interaction studies demonstrate that paroxetine binds to double-stranded calf thymus DNA via intercalation binding mode, and the binding constant values were calculated as 7.24 × 104 M-1 and 1.52 × 104 M-1 at 25 °C, based on voltammetric and spectroscopic results, respectively. Moreover, with the aim of elucidating the interaction mechanism between paroxetine and double-stranded calf thymus DNA, electrochemical and fluorescence spectroscopy studies along with molecular docking analysis were made.
Collapse
Affiliation(s)
- Rafia Nimal
- Quaid-i-Azam University, Department of Chemistry, Islamabad 45320, Pakistan; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
| | - Didem Nur Unal
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey; Ankara University, The Graduate School of Health Sciences, Ankara 06110, Turkey
| | - Cem Erkmen
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey; Ankara University, The Graduate School of Health Sciences, Ankara 06110, Turkey
| | - Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
| | - Muhammad Siddiq
- Quaid-i-Azam University, Department of Chemistry, Islamabad 45320, Pakistan
| | - Gokcen Eren
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06330 Ankara, Turkey
| | - Afzal Shah
- Quaid-i-Azam University, Department of Chemistry, Islamabad 45320, Pakistan
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey.
| |
Collapse
|
34
|
Kuba M, Pohl R, Kraus T, Hocek M. Nucleotides Bearing Red Viscosity-Sensitive Dimethoxy-Bodipy Fluorophore for Enzymatic Incorporation and DNA Labeling. Bioconjug Chem 2023; 34:133-139. [PMID: 36519639 DOI: 10.1021/acs.bioconjchem.2c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleosides and 2'-deoxyribonucleoside triphosphates (dNTPs) bearing 3,3'-dimethoxy-2,2'-diphenyl-6-(4-hydroxyphenyl)-bodipy fluorophore attached through a propargyl or propargyl-triethylene glycol linker to position 5 of 2'-deoxycytidine were designed and synthesized. They exerted bright red fluorescence and good sensitivity to viscosity changing their lifetime from 1.6 to 4.5 ns. The modifed dNTPs were substrates for DNA polymerases and were used in enzymatic synthesis of labeled DNA through primer extension. The modified DNA probes served as viscosity sensors responding to protein binding by changes of lifetime. The nucleotide with longer linker (dCpegMOBTP) was transported to live cells and incorporated into the genomic DNA, which can be useful for staining of DNA and imaging of DNA synthesis.
Collapse
Affiliation(s)
- Miroslav Kuba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
35
|
Lakshman MK. Base Modifications of Nucleosides via the Use of Peptide-Coupling Agents, and Beyond. CHEM REC 2023; 23:e202200182. [PMID: 36166699 DOI: 10.1002/tcr.202200182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Indexed: 01/24/2023]
Abstract
Several naturally occurring purine and pyrimidine nucleosides contain an amide linkage as part of the heterocyclic aglycone. Enolization of the amide and conversion to leaving groups at the amide carbon atom permits base modification by addition-elimination types of processes. Although a number of methods have been developed over the years for accomplishing such conversions, the present Personal Account describes efforts from the Lakshman laboratories. Facile activation of the amido groups in nucleobases can be achieved with peptide-coupling agents. Subsequent reaction with nucleophiles then accomplishes the base modifications. In many cases, the activation and displacement steps can be done as two-step, one-pot processes, whereas in other cases, discrete storable activated nucleosides can be isolated for subsequent displacement reactions. Using such an approach a wide range of nucleoside base modifications is readily achievable. In many instances, mechanistic investigations have been conducted so as to understand the activation process.
Collapse
Affiliation(s)
- Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
36
|
Kumar S, Kumar S, Arora A, Prasad AK, Maity J. 5‐Formyluridine and Its Synthetic Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202203432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Sandeep Kumar
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi India
| | - Sumit Kumar
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi India
| | - Aditi Arora
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi India
| | - Ashok K. Prasad
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi India
| | - Jyotirmoy Maity
- Department of Chemistry St. Stephen's College University of Delhi Delhi India
| |
Collapse
|
37
|
Kekić T, Lietard J. Sequence-dependence of Cy3 and Cy5 dyes in 3' terminally-labeled single-stranded DNA. Sci Rep 2022; 12:14803. [PMID: 36045146 PMCID: PMC9428881 DOI: 10.1038/s41598-022-19069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescence is an ideal tool to see and manipulate nucleic acids, and engage in their rich and complex biophysical properties. Labeling is the preferred approach to track and quantify fluorescence with nucleic acids and cyanine dyes are emblematic in this context. The fluorescent properties of cyanine dyes are known to be sequence-dependent, with purines in the immediate vicinity increasing the fluorescence intensity of Cy3 and Cy5 dyes, and the ability of nucleobases to modulate the photophysical properties of common fluorophores may influence fluorescence measurements in critical assays such as FISH, qPCR or high-throughput sequencing. In this paper, we comprehensively map the sequence-dependence of Cy3 and Cy5 dyes in 3'-fluorescently labeled single-stranded DNA by preparing the complete permutation library of the 5 consecutive nucleotides immediately adjacent to the dye, or 1024 sequences. G-rich motifs dominate the high fluorescence range, while C-rich motifs lead to significant quenching, an observation consistent with 5'-labeled systems. We also uncover GCGC patterns in the extreme top range of fluorescence, a feature specific to 3'-Cy3 and Cy5 oligonucleotides. This study represents the final piece in linking nucleotide identity to fluorescence changes for Cy3, Cy5 and fluorescein in all 3', 5', single-stranded and double-stranded DNA formats.
Collapse
Affiliation(s)
- Tadija Kekić
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
38
|
Ziemkiewicz K, Warminski M, Wojcik R, Kowalska J, Jemielity J. Quick Access to Nucleobase-Modified Phosphoramidites for the Synthesis of Oligoribonucleotides Containing Post-Transcriptional Modifications and Epitranscriptomic Marks. J Org Chem 2022; 87:10333-10348. [PMID: 35857285 PMCID: PMC9361293 DOI: 10.1021/acs.joc.2c01390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Herein, we report a straightforward one-step procedure
for modifying N-nucleophilic groups in the nucleobases
of commercially
available nucleoside phosphoramidites. This method involves the deprotonation
of amide groups under phase-transfer conditions and subsequent reaction
with electrophilic molecules such as alkyl halides or organic isocyanates.
Using this approach, we obtained 10 different classes of modified
nucleoside phosphoramidites suitable for the synthesis of oligonucleotides,
including several noncanonical nucleotides found in natural RNA or
DNA (e.g., m6A, i6A, m1A, g6A, m3C, m4C, m3U, m1G,
and m2G). Such modification of nucleobases is a common
mechanism for post-transcriptional regulation of RNA stability and
translational activity in various organisms. To better understand
this process, relevant cellular recognition partners (e.g., proteins)
must be identified and characterized. However, this step has been
impeded by limited access to molecular tools containing such modified
nucleotides.
Collapse
Affiliation(s)
- Kamil Ziemkiewicz
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Radoslaw Wojcik
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| |
Collapse
|
39
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
40
|
Ghosh P, Kropp HM, Betz K, Ludmann S, Diederichs K, Marx A, Srivatsan SG. Microenvironment-Sensitive Fluorescent Nucleotide Probes from Benzofuran, Benzothiophene, and Selenophene as Substrates for DNA Polymerases. J Am Chem Soc 2022; 144:10556-10569. [PMID: 35666775 DOI: 10.1021/jacs.2c03454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA polymerases can process a wide variety of structurally diverse nucleotide substrates, but the molecular basis by which the analogs are processed is not completely understood. Here, we demonstrate the utility of environment-sensitive heterocycle-modified fluorescent nucleotide substrates in probing the incorporation mechanism of DNA polymerases in real time and at the atomic level. The nucleotide analogs containing a selenophene, benzofuran, or benzothiophene moiety at the C5 position of 2'-deoxyuridine are incorporated into oligonucleotides (ONs) with varying efficiency, which depends on the size of the heterocycle modification and the DNA polymerase sequence family used. KlenTaq (A family DNA polymerase) is sensitive to the size of the modification as it incorporates only one heterobicycle-modified nucleotide into the growing polymer, whereas it efficiently incorporates the selenophene-modified nucleotide analog at multiple positions. Notably, in the single nucleotide incorporation assay, irrespective of the heterocycle size, it exclusively adds a single nucleotide at the 3'-end of a primer, which enabled devising a simple two-step site-specific ON labeling technique. KOD and Vent(exo-) DNA polymerases, belonging to the B family, tolerate all the three modified nucleotides and produce ONs with multiple labels. Importantly, the benzofuran-modified nucleotide (BFdUTP) serves as an excellent reporter by providing real-time fluorescence readouts to monitor enzyme activity and estimate the binding events in the catalytic cycle. Further, a direct comparison of the incorporation profiles, fluorescence data, and crystal structure of a ternary complex of KlenTaq DNA polymerase with BFdUTP poised for catalysis provides a detailed understanding of the mechanism of incorporation of heterocycle-modified nucleotides.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Heike M Kropp
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karin Betz
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Samra Ludmann
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Kay Diederichs
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
41
|
Choi H, Kim H, Kim KT. Fluorescent nucleobase analogs constructed by
aldol‐type
condensation: Design, properties, and synthetic optimization for fluorogenic labeling of
5‐formyluracil. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hayeon Choi
- Department of Chemistry Chungbuk National University Cheongju Republic of Korea
| | - Hokyung Kim
- Department of Chemistry Chungbuk National University Cheongju Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry Chungbuk National University Cheongju Republic of Korea
| |
Collapse
|
42
|
Vincent S, Mallick S, Barnoin G, Le HN, Michel BY, Burger A. An Expeditious Approach towards the Synthesis and Application of Water-Soluble and Photostable Fluorogenic Chromones for DNA Detection. Molecules 2022; 27:molecules27072267. [PMID: 35408665 PMCID: PMC9000371 DOI: 10.3390/molecules27072267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/29/2022] Open
Abstract
The intensive research for hybridization probes based on organic molecules with fluorogenic properties is currently attracting particular attention due to their potential to efficiently recognize different DNA conformations and the local environment. However, most established organic chromophores do not meet the requirements of this task, as they do not exhibit good brightness in aqueous buffer media, develop aggregation and/or are not easily conjugated to oligodeoxynucleotides (ODNs) while keeping their photophysics intact. Herein, an important modification strategy was employed for a well-known fluorophore, 2-(4-(diethylamino)phenyl)-3-hydroxychromone (dEAF). Although this push–pull dye absorbs intensively in the visible range and shows emission with large Stokes shifts in all organic solvents, it is strongly quenched in water. This Achilles’ heel prompted us to implement a new strategy to obtain a series of dyes that retain all the photophysical features of dEAF in water, conjugate readily with oligonucleotides, and furthermore demonstrate sensitivity to hydration, thus paving the way for a high-performance fluorogenic DNA hybridization probe.
Collapse
|
43
|
Hyun Lee K, Kimoto M, Kawai G, Okamoto I, Fin A, Hirao I. Dye‐Conjugated Spinach RNA by Genetic Alphabet Expansion. Chemistry 2022; 28:e202104396. [DOI: 10.1002/chem.202104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Kyung Hyun Lee
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Michiko Kimoto
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Gota Kawai
- Chiba Institute of Technology (CIT) Tsudanuma 2-17-1 Narashino Chiba 275-0016 Japan
| | - Itaru Okamoto
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Andrea Fin
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Ichiro Hirao
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| |
Collapse
|
44
|
Directly Arylated Oligonucleotides as Fluorescent Molecular Rotors for Probing DNA Single-Nucleotide Polymorphisms. Bioorg Med Chem 2022; 56:116617. [DOI: 10.1016/j.bmc.2022.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/18/2022]
|
45
|
Manna S, Sontakke VA, Srivatsan SG. Incorporation and Utility of a Responsive Ribonucleoside Analogue in Probing the Conformation of a Viral RNA Motif by Fluorescence and 19 F NMR Spectroscopy. Chembiochem 2021; 23:e202100601. [PMID: 34821449 DOI: 10.1002/cbic.202100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Indexed: 11/09/2022]
Abstract
Development of versatile probes that can enable the study of different conformations and recognition properties of therapeutic nucleic acid motifs by complementing biophysical techniques can greatly aid nucleic acid analysis and therapy. Here, we report the design, synthesis and incorporation of an environment-sensitive ribonucleoside analogue, which serves as a two-channel biophysical platform to investigate RNA structure and recognition by fluorescence and 19 F NMR spectroscopy techniques. The nucleoside analogue is based on a 5-fluorobenzofuran-uracil core and its fluorescence and 19 F NMR chemical shifts are highly sensitive to changes in solvent polarity and viscosity. Notably, the modified ribonucleotide and phosphoramidite substrates can be efficiently incorporated into RNA oligonucleotides (ONs) by in vitro transcription and standard solid-phase ON synthesis protocol, respectively. Fluorescence and 19 F readouts of the nucleoside incorporated into model RNA ONs are sensitive to the neighbouring base environment. The responsiveness of the probe was aptly utilized in detecting and quantifying the metal ion-induced conformational change in an internal ribosome entry site RNA motif of hepatitis C virus, which is an important therapeutic target. Taken together, our probe is a good addition to the nucleic acid analysis toolbox with the advantage that it can be used to study nucleic acid conformation and recognition simultaneously by two biophysical techniques.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Vyankat A Sontakke
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
46
|
Matyašovský J, Tack L, Palágyi A, Kuba M, Pohl R, Kraus T, Güixens-Gallardo P, Hocek M. Nucleotides bearing aminophenyl- or aminonaphthyl-3-methoxychromone solvatochromic fluorophores for the enzymatic construction of DNA probes for the detection of protein-DNA binding. Org Biomol Chem 2021; 19:9966-9974. [PMID: 34747967 DOI: 10.1039/d1ob02098f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed and synthesized nucleosides bearing aminophenyl- or aminonaphthyl-3-methoxychromone fluorophores attached at position 5 of cytosine or thymine and converted them to nucleoside triphosphates. The fluorophores showed solvatochromic fluorescence with strong fluorescence at 433-457 nm in non-polar solvents and very weak fluorescence at 567 nm in alcohols. The nucleosides and nucleotides also showed only negligible fluorescence in alcohols or water. The triphosphates were substrates for DNA polymerase in the enzymatic synthesis of modified DNA probes that showed only very weak fluorescence in aqueous buffer but a significant light-up and blue shift were observed when they interacted with proteins (histone H3.1 or p53 for double-stranded DNA probes or single-strand binding protein for single-stranded oligonucleotide probes). Hence, nucleotides have good potential in the construction of DNA sensors for studying protein-DNA interactions. The modified dNTPs were also transported into cells using a cyclodextrin-based transporter but they were not incorporated into the genomic DNA.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Laure Tack
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic.
| | - Attila Palágyi
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Miroslav Kuba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic.
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic.
| | - Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| |
Collapse
|
47
|
Pyne A, Nandi S, Layek S, Ghosh M, Nandi PK, Bera N, Sarkar N. Influence of a Polyneurotransmitter on DNA-Mediated Förster-Based Resonance Energy Transfer: A Path Leading to White Light Generation. J Phys Chem B 2021; 125:12637-12653. [PMID: 34784202 DOI: 10.1021/acs.jpcb.1c06836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physiologically important biomolecule, dopamine (DA), shows strong self-oxidation and aggregation behaviors, which have been controlled and modulated to result in fluorescent polydopamine (F-PDA) nanoparticles. On the other hand, the simultaneous binding of two diverse deoxyribonucleic acid (DNA) binding probes, 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) and ethidium bromide (EtBr), has been elaborately established to follow the Förster-based resonance energy transfer (FRET) pathway. The comparative understanding of this DNA-mediated FRET in three media, phosphate buffer saline (PBS) of pH 7.4, DA, and F-PDA, has concluded that the FRET efficiency in the three media follows the order: PBS > DA > F-PDA. This controlled FRET in the fluorescent F-PDA matrix serves a pivotal role for efficient white light (WL) generation with excellent Commission Internationale de l'Eclairage (CIE) parameters that match well with that of pure WL emission. The obtained WL emission has been shown to be very specific with respect to concentrations of different participating components and the excitation wavelength of the illuminating source. Furthermore, the optical properties of the WL emitting solution have been observed to be retained excellently inside the well-known agarose gel matrix. Finally, the mechanistic pathway behind such a FRET-based WL generation has been established in detail, and to the best of our knowledge, the current study offers the first and only report that discloses the influence of a fluorescent polyneurotransmitter matrix for successful generation of WL emission.
Collapse
Affiliation(s)
- Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sourav Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
48
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
49
|
Huang G, Su C, Wang L, Fei Y, Yang J. The Application of Nucleic Acid Probe-Based Fluorescent Sensing and Imaging in Cancer Diagnosis and Therapy. Front Chem 2021; 9:705458. [PMID: 34141699 PMCID: PMC8204288 DOI: 10.3389/fchem.2021.705458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 01/27/2023] Open
Abstract
It is well known that cancer incidence and death rates have been growing, but the development of cancer theranostics and therapeutics has been a challenging work. Recently, nucleic acid probe-based fluorescent sensing and imaging have achieved remarkable improvements in a variety of cancer management techniques, credited to their high sensitivity, good tolerance to interference, fast detection, and high versatility. Herein, nucleic acid probe-based fluorescent sensing and imaging are labeled with advanced fluorophores, which are essential for fast and sensitive detection of aberrant nucleic acids and other cancer-relevant molecules, consequently performing cancer early diagnosis and targeted treatment. In this review, we introduce the characteristics of nucleic acid probes, summarize the development of nucleic acid probe-based fluorescent sensing and imaging, and prominently elaborate their applications in cancer diagnosis and treatment. In discussion, some challenges and perspectives are elaborated in the field of nucleic acid probe-based fluorescent sensing and imaging.
Collapse
Affiliation(s)
- Ge Huang
- Department of Medicine, University of South China, Hengyang, China.,Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Chen Su
- Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Lijuan Wang
- Department of Medicine, University of South China, Hengyang, China.,Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Yanxia Fei
- Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Jinfeng Yang
- Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| |
Collapse
|
50
|
Brylev VA, Lysenko IL, Kokin EA, Martynenko-Makaev YV, Ryazantsev DY, Shmanai VV, Korshun VA. Molecular Beacon DNA Probes with Fluorescein Bifluorophore. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:734-740. [PMID: 34149274 PMCID: PMC8193957 DOI: 10.1134/s1068162021030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022]
Abstract
An azido-derivative of a fluorescein bifluorophore was obtained and used for the synthesis of “molecular beacon”-type oligonucleotide fluorogenic probes for RT-PCR. Eight probe variants were synthesized based on an optimized sequence: with one or two quencher residues at the 3'-end, with a single or bifluorophore fluorescein label attached to 5'-end using modifying phosphoramidites (short linker) or “click reaction” (long linker). Comparison of probes in RT-PCR showed that probes with a doubled quencher (single fluorescein on a short linker) and doubled dye on a short linker (single dye) are somewhat superior in sensitivity to a standard probe (single quencher, single dye on a short linker) by the value of ΔCt = 1–2.
Collapse
Affiliation(s)
- V A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - I L Lysenko
- Institute of Physical Organic Chemistry of NAS Belarus, 220072 Minsk, Belarus
| | - E A Kokin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | - D Y Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - V V Shmanai
- Institute of Physical Organic Chemistry of NAS Belarus, 220072 Minsk, Belarus
| | - V A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.,Department of Biology and Biotechnology, National Research University Higher School of Economics, 117312 Moscow, Russia.,Gause Institute of New Antibiotics, 119021 Moscow, Russia
| |
Collapse
|